ASTRONOMY 16 - SUMMER 2020

Exercise Sheet 2

DUE by Monday, July 13, 2020
300 points

A. Closed Quadratures

Consider the following integral:

$$
\begin{equation*}
I_{1}=\int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta=\int_{0}^{\pi / 2} f(\theta) d \theta \tag{1}
\end{equation*}
$$

where $m>0, n>0$. Although the code to calculate this integral must be written so that any value of m and n can be input, use $m=2$ and $n=4$ for outputting specific values.
(i) I_{1} can be calculated analytically. Use that book of tabulated integrals you never use to derive the analytical solution of I_{1}. After writing the general solution for any choice of m and n, calculate the analytic solution of I_{1} for $m=2$ and $n=4$ (Hint: it should be 0.025).
(ii) Plot the integrand $f(\theta)$ as a function of θ
(iii) Calculate I_{1} numerically using the trapezoidal extended closed formula. (Hint: to check that the algorithm works, test it with the integrand function $f(x)=x+1$ over the interval [0,1]; calculate numerically the value of I_{1} as a function of N points used to sample the interval [0,1], and plot the resulting values of I_{1} as a function of $N-y o u$ should find the same exact value (corresponding to the analytic solution) for any N used).
(iv) Estimate the error for the trapezoidal extended closed formula by plotting $\log _{10}$ (error), where error $=\left|I_{1, \text { exact }}-I_{1, \text { numeric }}\right|$, as a function of $\log _{10} N$.
(v: Bonus) Calculate I_{1} numerically using Simpson's extended closed formula. (Hint: to check that the algorithm works, test it with the integrand function $f(x)=x^{3}+x^{2}+x+1$ over the interval [0,1]; calculate numerically the value of I_{1} as a function of N points used to sample the interval [0,1], and plot the resulting values of I_{1} as a function of $N-$ you should find the same exact value (corresponding to the analytic solution) for any N used).
(vi: Bonus) Compare the results obtained in (iii) and (iv). Specifically, on the same figure, plot $\log _{10}$ (error), where error $=\left|I_{1, \text { exact }}-I_{1, \text { numeric }}\right|$, as a function of $\log _{10} N$, for both the trapezoidal (as you did in part iv) and Simpson's extended closed formulas. Which is more precise?

