ASTRONOMY 16 - SUMMER 2020

Exercise Sheet 2

DUE by Monday, July 13, 2020 300 points

A. Closed Quadratures

Consider the following integral:

$$I_{1} = \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \int_{0}^{\pi/2} f(\theta) d\theta, \tag{1}$$

where m > 0, n > 0. Although the code to calculate this integral must be written so that any value of m and n can be input, use m = 2 and n = 4 for outputting specific values.

- (i) I_1 can be calculated analytically. Use that book of tabulated integrals you never use to derive the analytical solution of I_1 . After writing the general solution for any choice of m and n, calculate the analytic solution of I_1 for m = 2 and n = 4 (Hint: it should be 0.025).
 - (ii) Plot the integrand $f(\theta)$ as a function of θ
- (iii) Calculate I_1 numerically using the trapezoidal extended closed formula. (Hint: to check that the algorithm works, test it with the integrand function f(x) = x + 1 over the interval [0,1]; calculate numerically the value of I_1 as a function of N points used to sample the interval [0,1], and plot the resulting values of I_1 as a function of N you should find the same exact value (corresponding to the analytic solution) for any N used).
- (iv) Estimate the error for the trapezoidal extended closed formula by plotting $\log_{10} (error)$, where $error = |I_{1,\text{exact}} I_{1,\text{numeric}}|$, as a function of $\log_{10} N$.
- (v: **Bonus**) Calculate I_1 numerically using Simpson's extended closed formula. (Hint: to check that the algorithm works, test it with the integrand function $f(x) = x^3 + x^2 + x + 1$ over the interval [0,1]; calculate numerically the value of I_1 as a function of N points used to sample the interval [0,1], and plot the resulting values of I_1 as a function of N you should find the same exact value (corresponding to the analytic solution) for any N used).
- (vi: **Bonus**) Compare the results obtained in (iii) and (iv). Specifically, on the same figure, plot $\log_{10}(error)$, where $error = |I_{1,exact} I_{1,numeric}|$, as a function of $\log_{10} N$, for both the trapezoidal (as you did in part iv) and Simpson's extended closed formulas. Which is more precise?