Root Finding and
Nonlinear Sets of
Equations

9.0 Introduction

We now consider that most basic of tasks, solving equations numerically. While
most equations are born with both a right-hand side and a left-hand side, one tradi-
tionally moves all terms to the left, leaving

f(x) =0 (9.0.1)

whose solution or solutions are desired. When there is only one independent variable,
the problem is one-dimensional, namely to find the root or roots of a function.

With more than one independent variable, more than one equation can be sat-
isfied simultaneously. You likely once learned the implicit function theorem, which
(in this context) gives us the hope of satisfying N equations in N unknowns simul-
taneously. Note that we have only hope, not certainty. A nonlinear set of equations
may have no (real) solutions at all. Contrariwise, it may have more than one solu-
tion. The implicit function theorem tells us that “generically” the solutions will be
distinct, pointlike, and separated from each other. If, however, life is so unkind as to
present you with a nongeneric, i.e., degenerate, case, then you can get a continuous
family of solutions. In vector notation, we want to find one or more N -dimensional

solution vectors X such that
fx)=0 (9.0.2)

where f is the N-dimensional vector-valued function whose components are the in-
dividual equations to be satisfied simultaneously.

Don’t be fooled by the apparent notational similarity of equations (9.0.2) and
(9.0.1). Simultaneous solution of equations in N dimensions is much more difficult
than finding roots in the one-dimensional case. The principal difference between one
and many dimensions is that, in one dimension, it is possible to bracket or “trap” a
root between bracketing values, and then hunt it down like a rabbit. In multidimen-
sions, you can never be sure that the root is there at all until you have found it.
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Except in linear problems, root finding invariably proceeds by iteration, and
this is equally true in one or in many dimensions. Starting from some approximate
trial solution, a useful algorithm will improve the solution until some predetermined
convergence criterion is satisfied. For smoothly varying functions, good algorithms
will always converge, provided that the initial guess is good enough. Indeed one can
even determine in advance the rate of convergence of most algorithms.

It cannot be overemphasized, however, how crucially success depends on hav-
ing a good first guess for the solution, especially for multidimensional problems.
This crucial beginning usually depends on analysis rather than numerics. Carefully
crafted initial estimates reward you not only with reduced computational effort, but
also with understanding and increased self-esteem. Hamming’s motto, “the purpose
of computing is insight, not numbers,” is particularly apt in the area of finding roots.
You should repeat this motto aloud whenever your program converges, with sixteen-
digit accuracy, to the wrong root of a problem, or whenever it fails to converge be-
cause there is actually no root, or because there is a root but your initial estimate was
not sufficiently close to it.

“This talk of insight is all very well, but what do I actually do?” For one-
dimensional root finding, it is possible to give some straightforward answers: You
should try to get some idea of what your function looks like before trying to find
its roots. If you need to mass-produce roots for many different functions, then you
should at least know what some typical members of the ensemble look like. Next,
you should always bracket a root, that is, know that the function changes sign in an
identified interval, before trying to converge to the root’s value.

Finally (this is advice with which some daring souls might disagree, but we
give it nonetheless) never let your iteration method get outside of the best bracketing
bounds obtained at any stage. We will see below that some pedagogically impor-
tant algorithms, such as the secant method or Newton-Raphson, can violate this last
constraint and are thus not recommended unless certain fixups are implemented.

Multiple roots, or very close roots, are a real problem, especially if the multi-
plicity is an even number. In that case, there may be no readily apparent sign change
in the function, so the notion of bracketing a root — and maintaining the bracket
— becomes difficult. We are hard-liners: We nevertheless insist on bracketing a
root, even if it takes the minimum-searching techniques of Chapter 10 to determine
whether a tantalizing dip in the function really does cross zero. (You can easily
modify the simple golden section routine of §10.2 to return early if it detects a sign
change in the function. And, if the minimum of the function is exactly zero, then you
have found a double root.)

As usual, we want to discourage you from using routines as black boxes without
understanding them. However, as a guide to beginners, here are some reasonable
starting points:

e Brent’s algorithm in §9.3 is the method of choice to find a bracketed root of a
general one-dimensional function, when you cannot easily compute the func-
tion’s derivative. Ridders’ method (§9.2) is concise, and a close competitor.

e When you can compute the function’s derivative, the routine rtsafe in §9.4,
which combines the Newton-Raphson method with some bookkeeping on the
bounds, is recommended. Again, you must first bracket your root. If you can
easily compute two derivatives, then Halley’s method (§9.4.2) is often worth
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e Roots of polynomials are a special case. Laguerre’s method, in §9.5, is recom-
mended as a starting point. Beware: Some polynomials are ill-conditioned!

e Finally, for multidimensional problems, the only elementary method is Newton-
Raphson (§9.6), which works very well if you can supply a good first guess of
the solution. Try it. Then read the more advanced material in §9.7 for some
more complicated, but globally more convergent, alternatives.

The routines in this chapter require that you input the function whose roots you
seek. For maximum flexibility, the routines typically will accept either a function or
a functor (see §1.3.3).

9.0.1 Graphical Search for Roots

It never hurts to look at your function, especially if you encounter any difficulty
in finding its roots blindly. If you are thus hunting roots “by eye,” it is useful to have
a routine that repeatedly plots a function to the screen, accepting user-supplied lower
and upper limits for x, automatically scaling y, and making zero crossings visible.
The following routine, or something like it, can occasionally save you a lot of grief.

template<class T>
void scrsho(T &fx) {
Graph the function or functor £x over the prompted-for interval x1,x2. Query for another plot
until the user signals satisfaction.
const Int RES=500; Number of function evaluations for each plot.
const Doub XLL=75., XUR=525., YLL=250., YUR=700.; Corners of plot, in points.
char *plotfilename = tmpnam(NULL);
VecDoub xx(RES), yy(RES);

Doub x1,x2;
Int i;
for (5;) {

Doub ymax = -9.99e99, ymin = 9.99e99, del;
cout << endl << "Enter x1 x2 (x1=x2 to stop):" << endl;

cin >> x1 >> x2; Query for another plot, quit if x1=x2.

if (x1==x2) break;

for (i=0;i<RES;i++) { Evaluate the function at equal intervals. Find
xx[i] = x1 + i*(x2-x1)/(RES-1.); the largest and smallest values.

yyl[il = fx(xx[il);
if (yy[i] > ymax) ymax=yyl[il;
if (yy[i] < ymin) ymin=yy[il;
}
del = 0.05*((ymax-ymin)+(ymax==ymin ? abs(ymax) : 0.));
Plot commands, following, are in PSplot syntax (§22.1). You can substitute commands
for your favorite plotting package.
PSpage pg(plotfilename) ;
PSplot plot(pg,XLL,XUR,YLL,YUR);
plot.setlimits(x1,x2,ymin-del,ymax+del) ;
plot.frame();
plot.autoscales();
plot.lineplot(xx,yy);
if (ymax*ymin < 0.) plot.lineseg(x1,0.,x2,0.);
plot.display();
}

remove (plotfilename) ;

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
Chapter 5.
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Acton, FS. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapters 2, 7, and 14.

Deuflhard, P. 2004, Newton Methods for Nonlinear Problems (Berlin: Springer).

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), Chapter 8.

Householder, A.S. 1970, The Numerical Treatment of a Single Nonlinear Equation (New York:
McGraw-Hill).

9.1 Bracketing and Bisection

We will say that a root is bracketed in the interval (a,b) if f(a) and f(b)
have opposite signs. If the function is continuous, then at least one root must lie
in that interval (the intermediate value theorem). If the function is discontinuous,
but bounded, then instead of a root there might be a step discontinuity that crosses
zero (see Figure 9.1.1). For numerical purposes, that might as well be a root, since
the behavior is indistinguishable from the case of a continuous function whose zero
crossing occurs in between two “adjacent” floating-point numbers in a machine’s
finite-precision representation. Only for functions with singularities is there the pos-
sibility that a bracketed root is not really there, as for example

1

X —C

f(x) = 9.1.1)
Some root-finding algorithms (e.g., bisection in this section) will readily converge to
¢ in (9.1.1). Luckily there is not much possibility of your mistaking ¢, or any number
x close to it, for a root, since mere evaluation of | f(x)| will give a very large, rather
than a very small, result.

If you are given a function in a black box, there is no sure way of bracketing
its roots, or even of determining that it has roots. If you like pathological examples,
think about the problem of locating the two real roots of equation (3.0.1), which dips
below zero only in the ridiculously small interval of about x = 7 4 107667,

In the next chapter we will deal with the related problem of bracketing a func-
tion’s minimum. There it is possible to give a procedure that always succeeds; in
essence, “Go downhill, taking steps of increasing size, until your function starts back
uphill.” There is no analogous procedure for roots. The procedure “go downhill until
your function changes sign,” can be foiled by a function that has a simple extremum.
Nevertheless, if you are prepared to deal with a “failure” outcome, this procedure
is often a good first start; success is usual if your function has opposite signs in the
limit x — Fo0.

template <class T>
Bool zbrac(T &func, Doub &x1, Doub &x2)
Given a function or functor func and an initial guessed range x1 to x2, the routine expands
the range geometrically until a root is bracketed by the returned values x1 and x2 (in which
case zbrac returns true) or until the range becomes unacceptably large (in which case zbrac
returns false).
{

const Int NTRY=50;

const Doub FACTOR=1.6;

roots.h
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Figure 9.1.1. Some situations encountered while root finding: (a) an isolated root x1 bracketed by two
points @ and b at which the function has opposite signs; (b) there is not necessarily a sign change in the
function near a double root (in fact, there is not necessarily a root!); (c) a pathological function with many
roots; in (d) the function has opposite signs at points @ and b, but the points bracket a singularity, not

a root.
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if (x1 == x2) throw("Bad initial range in zbrac");
Doub fl=func(xl);
Doub f2=func(x2);
for (Int j=0;j<NTRY;j++) {
if (£f1*f2 < 0.0) return true;
if (abs(f1) < abs(f2))
fi=func(x1l += FACTOR*(x1-x2));
else
f2=func(x2 += FACTOR*(x2-x1));
}

return false;

Alternatively, you might want to “look inward” on an initial interval, rather
than “look outward” from it, asking if there are any roots of the function f(x) in
the interval from x; to x, when a search is carried out by subdivision into n equal
intervals. The following function calculates brackets for distinct intervals that each
contain one or more roots.

template <class T>
void zbrak(T &fx, const Doub x1, const Doub x2, const Int n, VecDoub_0 &xbil,
VecDoub_0 &xb2, Int &nroot)
Given a function or functor £fx defined on the interval [x1,x2], subdivide the interval into
n equally spaced segments, and search for zero crossings of the function. nroot will be set
to the number of bracketing pairs found. If it is positive, the arrays xb1[0..nroot-1] and
xb2[0. .nroot-1] will be filled sequentially with any bracketing pairs that are found. On input,
these vectors may have any size, including zero; they will be resized to > nroot.
{
Int nb=20;
xbl.resize(nb) ;
xb2.resize(nb);

nroot=0;
Doub dx=(x2-x1)/n; Determine the spacing appropriate to the mesh.
Doub x=x1;
Doub fp=fx(x1);
for (Int i=0;i<n;i++) { Loop over all intervals
Doub fc=fx(x += dx);
if (fcxfp <= 0.0) { If a sign change occurs, then record values for the
xb1[nroot]=x-dx; bounds.

xb2[nroot++]=x;
if (nroot == nb) {
VecDoub tempvecl(xbl),tempvec2(xb2);
xbl.resize(2*nb) ;
xb2.resize (2*nb) ;
for (Int j=0; j<nb; j++) {
xbl[jl=tempveci[j];
xb2[j]l=tempvec2[j];
}
nb *= 2;

fp=fc;

9.1.1 Bisection Method

Once we know that an interval contains a root, several classical procedures
are available to refine it. These proceed with varying degrees of speed and sure-
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ness toward the answer. Unfortunately, the methods that are guaranteed to converge
plod along most slowly, while those that rush to the solution in the best cases can
also dash rapidly to infinity without warning if measures are not taken to avoid
such behavior.

The bisection method is one that cannot fail. It is thus not to be sneered at as
a method for otherwise badly behaved problems. The idea is simple. Over some
interval the function is known to pass through zero because it changes sign. Evaluate
the function at the interval’s midpoint and examine its sign. Use the midpoint to
replace whichever limit has the same sign. After each iteration the bounds containing
the root decrease by a factor of two. If after n iterations the root is known to be
within an interval of size ¢,, then after the next iteration it will be bracketed within
an interval of size

eni1 = €n/2 (9.1.2)

neither more nor less. Thus, we know in advance the number of iterations required
to achieve a given tolerance in the solution,

€0
n = log, - (9.1.3)

where € is the size of the initially bracketing interval and € is the desired ending
tolerance.

Bisection must succeed. If the interval happens to contain more than one root,
bisection will find one of them. If the interval contains no roots and merely straddles
a singularity, it will converge on the singularity.

When a method converges as a factor (less than 1) times the previous uncertainty
to the first power (as is the case for bisection), it is said to converge linearly. Methods
that converge as a higher power,

€n+1 = constant X (&,)" m> 1 (9.1.4)

are said to converge superlinearly. In other contexts, “linear” convergence would be
termed “exponential” or “geometrical.” That is not too bad at all: Linear convergence
means that successive significant figures are won linearly with computational effort.
It remains to discuss practical criteria for convergence. It is crucial to keep in
mind that only a finite set of floating point values have exact computer representa-
tions. While your function might analytically pass through zero, it is probable that
its computed value is never zero, for any floating-point argument. One must decide
what accuracy on the root is attainable: Convergence to within 10719 in absolute
value is reasonable when the root lies near 1 but certainly unachievable if the root
lies near 102°. One might thus think to specify convergence by a relative (fractional)
criterion, but this becomes unworkable for roots near zero. To be most general, the
routines below will require you to specify an absolute tolerance, such that iterations
continue until the interval becomes smaller than this tolerance in absolute units. Of-
ten you may wish to take the tolerance to be €(|x1| 4 |x2|)/2, where € is the machine
precision and x; and x, are the initial brackets. When the root lies near zero you
ought to consider carefully what reasonable tolerance means for your function. The
following routine quits after 50 bisections in any event, with 279 &~ 10715,
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template <class T>
Doub rtbis(T &func, const Doub x1, const Doub x2, const Doub xacc) {
Using bisection, return the root of a function or functor func known to lie between x1 and x2.
The root will be refined until its accuracy is *xacc.
const Int JMAX=50; Maximum allowed number of bisections.
Doub dx,xmid,rtb;
Doub f=func(x1);
Doub fmid=func(x2);
if (f*fmid >= 0.0) throw("Root must be bracketed for bisection in rtbis");

rtb = f < 0.0 ? (dx=x2-x1,x1) : (dx=x1-x2,x2); Orient the search so that £>0
for (Int j=0;j<JMAX;j++) { lies at x+dx.

fmid=func (xmid=rtb+(dx *= 0.5)); Bisection loop.

if (fmid <= 0.0) rtb=xmid;

if (abs(dx) < xacc || fmid == 0.0) return rtb;
}

throw("Too many bisections in rtbis");

9.2 Secant Method, False Position Method, and
Ridders’ Method

For functions that are smooth near a root, the methods known respectively as
false position (or regula falsi) and the secant method generally converge faster than
bisection. In both of these methods the function is assumed to be approximately
linear in the local region of interest, and the next improvement in the root is taken as
the point where the approximating line crosses the axis. After each iteration, one of
the previous boundary points is discarded in favor of the latest estimate of the root.

The only difference between the methods is that secant retains the most recent
of the prior estimates (Figure 9.2.1; this requires an arbitrary choice on the first
iteration), while false position retains that prior estimate for which the function value
has the opposite sign from the function value at the current best estimate of the root,
so that the two points continue to bracket the root (Figure 9.2.2). Mathematically,
the secant method converges more rapidly near a root of a sufficiently continuous
function. Its order of convergence can be shown to be the “golden ratio” 1.618. ..,
so that

lim |ex4q| A const x |eg|'®!8 (9.2.1)
k—o00

The secant method has, however, the disadvantage that the root does not necessar-
ily remain bracketed. For functions that are not sufficiently continuous, the algo-
rithm can therefore not be guaranteed to converge: Local behavior might send it off
toward infinity.

False position, since it sometimes keeps an older rather than newer function
evaluation, has a lower order of convergence. Since the newer function value will
sometimes be kept, the method is often superlinear, but estimation of its exact order
is not so easy.

Here are sample implementations of these two related methods. While these
methods are standard textbook fare, Ridders’ method, described below, or Brent’s
method, described in the next section, are almost always better choices. Figure 9.2.3
shows the behavior of the secant and false-position methods in a difficult situation.

roots.h
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Figure 9.2.1. Secant method. Extrapolation or interpolation lines (dashed) are drawn through the two
most recently evaluated points, whether or not they bracket the function. The points are numbered in the
order that they are used.

Figure 9.2.2. False-position method. Interpolation lines (dashed) are drawn through the most recent
points that bracket the root. In this example, point 1 thus remains “active” for many steps. False position
converges less rapidly than the secant method, but it is more certain.
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Figure 9.2.3. Example where both the secant and false-position methods will take many iterations to
arrive at the true root. This function would be difficult for many other root-finding methods.

template <class T>
Doub rtflsp(T &func, const Doub x1, const Doub x2, const Doub xacc) {
Using the false-position method, return the root of a function or functor func known to lie
between x1 and x2. The root is refined until its accuracy is £xacc.
const Int MAXIT=30; Set to the maximum allowed number of iterations.
Doub x1,xh,del;
Doub fl=func(xl);

Doub fh=func(x2); Be sure the interval brackets a root.
if (£f1*fh > 0.0) throw("Root must be bracketed in rtflsp");
if (f1 < 0.0) { Identify the limits so that x1 corresponds to the low
x1=x1; side.
xh=x2;
} else {
x1=x2;
xh=x1;
SWAP(£f1,fh);
}
Doub dx=xh-x1;
for (Int j=0;j<MAXIT;j++) { False-position loop.

Doub rtf=xl+dx*fl/(f1-fh); Increment with respect to latest value.
Doub f=func(rtf);
if (f < 0.0) { Replace appropriate limit.
del=x1-rtf;
x1=rtf;
fl=f;
} else {
del=xh-rtf;
xh=rtf;
fh=f;
}
dx=xh-x1;
if (abs(del) < xacc || f == 0.0) return rtf; Convergence.
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}

throw("Maximum number of iterations exceeded in rtflsp");

template <class T>
Doub rtsec(T &func, const Doub x1, const Doub x2, const Doub xacc) {
Using the secant method, return the root of a function or functor func thought to lie between
x1 and x2. The root is refined until its accuracy is Fxacc.
const Int MAXIT=30; Maximum allowed number of iterations.
Doub x1,rts;
Doub fl=func(x1);
Doub f=func(x2);
if (abs(fl) < abs(f)) { Pick the bound with the smaller function value as
rts=x1; the most recent guess.
x1=x2;
SWAP(£1,£);
} else {
x1=x1;
rts=x2;
}
for (Int j=0;j<MAXIT;j++) { Secant loop.
Doub dx=(xl-rts)*f/(f-f1); Increment with respect to latest value.
xl=rts;
fl=f;
rts += dx;
f=func(rts);
if (abs(dx) < xacc || f == 0.0) return rts; Convergence.
}

throw("Maximum number of iterations exceeded in rtsec");

9.2.1 Ridders’ Method

A powerful variant on false position is due to Ridders [1]. When a root is brack-
eted between x; and x,, Ridders’ method first evaluates the function at the midpoint
x3 = (X1 4+ x2)/2. It then factors out that unique exponential function that turns the
residual function into a straight line. Specifically, it solves for a factor € that gives

f(x1) =2f(x3)e€ + f(x2)e*? =0 (9.2.2)

This is a quadratic equation in e2, which can be solved to give

b0 S+ sign[f (x2)]v/ [ (x3)2 = f(x1) f(x2)
f(x2)
Now the false-position method is applied, not to the values f(x1), f(x3), f(x2), but

to the values f(x1), f(x3)e2, f(x2)e?2, yielding a new guess for the root, x4. The
overall updating formula (incorporating the solution 9.2.3) is

sign[f(x1) — f(x2)] f(x3)
V(32 = fxn) f(x2)
Equation (9.2.4) has some very nice properties. First, x4 is guaranteed to lie in

the interval (x1, x»), so the method never jumps out of its brackets. Second, the con-
vergence of successive applications of equation (9.2.4) is quadratic, that is, m = 2

(9.2.3)

X4 = X3 + (X3 — Xl) (924)
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in equation (9.1.4). Since each application of (9.2.4) requires two function evalua-
tions, the actual order of the method is \/5, not 2; but this is still quite respectably
superlinear: The number of significant digits in the answer approximately doubles
with each two function evaluations. Third, taking out the function’s “bend” via ex-
ponential (that is, ratio) factors, rather than via a polynomial technique (e.g., fitting
a parabola), turns out to give an extraordinarily robust algorithm. In both reliability
and speed, Ridders’ method is generally competitive with the more highly developed
and better established (but more complicated) method of van Wijngaarden, Dekker,
and Brent, which we next discuss.

template <class T>
Doub zriddr(T &func, const Doub x1, const Doub x2, const Doub xacc) {
Using Ridders’ method, return the root of a function or functor func known to lie between x1
and x2. The root will be refined to an approximate accuracy xacc.
const Int MAXIT=60;
Doub fl=func(xl);
Doub fh=func(x2);
if ((£f1 > 0.0 & fh < 0.0) || (f1 < 0.0 & fh > 0.0)) {

Doub x1=x1;
Doub xh=x2;
Doub ans=-9.99e99; Any highly unlikely value, to simplify logic
for (Int j=0;j<MAXIT;j++) { below.
Doub xm=0.5% (x1+xh) ;
Doub fm=func(xm) ; First of two function evaluations per it-
Doub s=sqrt(fm*fm-f1lx*fh); eration.
if (s == 0.0) return ans;

Doub xnew=xm+(xm-x1)*((f1 >= fh 7 1.0 : -1.0)*fm/s); Updating formula.

if (abs(xnew-ans) <= xacc) return ans;
ans=xnew;
Doub fnew=func(ans); Second of two function evaluations per
if (fnew == 0.0) return ans; iteration.
if (SIGN(fm,fnew) != fm) { Bookkeeping to keep the root bracketed
x1=xm; on next iteration.
fl=fm;
xh=ans;
fh=fnew;
} else if (SIGN(fl,fnew) !'= f1) {
xh=ans;
fh=fnew;
} else if (SIGN(fh,fnew) != fh) {
x1l=ans;
fl=fnew;
} else throw("never get here.");
if (abs(xh-xl) <= xacc) return ans;

}

throw("zriddr exceed maximum iterations");
}
else {

if (f1 == 0.0) return x1;

if (fh == 0.0) return x2;

throw("root must be bracketed in zriddr.");
}

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), §8.3.
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Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press), Chapter 12.

Ridders, C.J.F. 1979, “A New Algorithm for Computing a Single Root of a Real Continuous
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9.3 Van Wijngaarden-Dekker-Brent Method

While secant and false position formally converge faster than bisection, one
finds in practice pathological functions for which bisection converges more rapidly.
These can be choppy, discontinuous functions, or even smooth functions if the sec-
ond derivative changes sharply near the root. Bisection always halves the interval,
while secant and false position can sometimes spend many cycles slowly pulling dis-
tant bounds closer to a root. Ridders’ method does a much better job, but it too can
sometimes be fooled. Is there a way to combine superlinear convergence with the
sureness of bisection?

Yes. We can keep track of whether a supposedly superlinear method is actually
converging the way it is supposed to, and, if it is not, we can intersperse bisection
steps so as to guarantee at least linear convergence. This kind of super-strategy re-
quires attention to bookkeeping detail, and also careful consideration of how round-
off errors can affect the guiding strategy. Also, we must be able to determine reliably
when convergence has been achieved.

An excellent algorithm that pays close attention to these matters was developed
in the 1960s by van Wijngaarden, Dekker, and others at the Mathematical Center in
Amsterdam, and later improved by Brent [1]. For brevity, we refer to the final form of
the algorithm as Brent’s method. The method is guaranteed (by Brent) to converge,
so long as the function can be evaluated within the initial interval known to contain
a root.

Brent’s method combines root bracketing, bisection, and inverse quadratic in-
terpolation to converge from the neighborhood of a zero crossing. While the false-
position and secant methods assume approximately linear behavior between two
prior root estimates, inverse quadratic interpolation uses three prior points to fit an
inverse quadratic function (x as a quadratic function of y) whose value at y = 0 is
taken as the next estimate of the root x. Of course one must have contingency plans
for what to do if the root falls outside of the brackets. Brent’s method takes care of all
that. If the three point pairs are [a, f(a)], [b, f(b)], [c, f(c)], then the interpolation
formula (cf. equation 3.2.1) is

o Do S@ly=fB)e Iy = fOIy = f(e)]a
[f(c) = f@][f(c) = f(B)] ~ [f(a) = fF(D)][f(a) — f(c)]
[y = f Iy = f(@)]b
[f(B) = (OIS (D) = f(a)]

Setting y to zero gives a result for the next root estimate, which can be written as

x=b+P/Q (9.3.2)

(9.3.1)
_|_

where, in terms of

R=f(®b)/f(c), S=fb)/fl@. T=fla)fl) (9.3.3)
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we have
P=S[T(R-—T)(c—-b)—(1—R)(b—a)]

Q=(T-DR-D(S -1

In practice b is the current best estimate of the root and P/Q ought to be a “small”
correction. Quadratic methods work well only when the function behaves smoothly;
they run the serious risk of giving very bad estimates of the next root or causing ma-
chine failure by an inappropriate division by a very small number (Q & 0). Brent’s
method guards against this problem by maintaining brackets on the root and check-
ing where the interpolation would land before carrying out the division. When the
correction P/Q would not land within the bounds, or when the bounds are not col-
lapsing rapidly enough, the algorithm takes a bisection step. Thus, Brent’s method
combines the sureness of bisection with the speed of a higher-order method when
appropriate. We recommend it as the method of choice for general one-dimensional
root finding where a function’s values only (and not its derivative or functional form)
are available.

(9.3.4)

template <class T>
Doub zbrent(T &func, const Doub x1, const Doub x2, const Doub tol)
Using Brent's method, return the root of a function or functor func known to lie between x1
and x2. The root will be refined until its accuracy is tol.
{
const Int ITMAX=100; Maximum allowed number of iterations.
const Doub EPS=numeric_limits<Doub>::epsilon();
Machine floating-point precision.
Doub a=x1,b=x2,c=x2,d,e,fa=func(a),fb=func(b),fc,p,q,r,s,toll,xm;

if ((fa > 0.0 & fb > 0.0) || (fa < 0.0 & fb < 0.0))
throw("Root must be bracketed in zbrent");
fc=fb;
for (Int iter=0;iter<ITMAX;iter++) {
if ((fb > 0.0 && fc > 0.0) || (fb < 0.0 && fc < 0.0)) {
c=a; Rename a, b, ¢ and adjust bounding interval
fc=fa; d.
e=d=b-a;
}
if (abs(fc) < abs(fb)) {
a=b;
b=c;
c=a;
fa=fb;
fb=fc;
fc=fa;
}
tol1=2.0*EPS*abs(b)+0.5*%tol; Convergence check

xm=0.5*(c-b) ;
if (abs(xm) <= toll || fb == 0.0) return b;
if (abs(e) >= toll && abs(fa) > abs(fb)) {
s=fb/fa; Attempt inverse quadratic interpolation.
if (a == ¢c) {
p=2.0*xm*s;
q=1.0-s;
} else {
g=fa/fc;
r=fb/fc;
p=s*(2.0*xm*q* (q-r)-(b-a) *(r-1.0));
q=(q-1.0)*(r-1.0)*(s-1.0);
}
if (p > 0.0) q = -q; Check whether in bounds.
p=abs(p) ;

roots.h
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Doub mini=3.0*xm*q-abs(tollxq);
Doub min2=abs(exq) ;
if (2.0%p < (minl < min2 ? minl : min2)) {

e=d; Accept interpolation.
d=p/q;
} else {
d=xm; Interpolation failed, use bisection.
e=d;
}
} else { Bounds decreasing too slowly, use bisection.
d=xm;
e=d;
}
a=b; Move last best guess to a.
fa=fb;
if (abs(d) > toll) Evaluate new trial root.
b += d;
else
b += SIGN(toll,xm);
fb=func(b) ;

}

throw("Maximum number of iterations exceeded in zbrent");

CITED REFERENCES AND FURTHER READING:
Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall); reprinted 2002 (New York: Dover), Chapters 3, 4.[1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), §7.2.

9.4 Newton-Raphson Method Using Derivative

Perhaps the most celebrated of all one-dimensional root-finding routines is New-
ton’s method, also called the Newton-Raphson method. Joseph Raphson (1648—
1715) was a contemporary of Newton who independently invented the method in
1690, some 20 years after Newton did, but some 20 years before Newton actually
published it. This method is distinguished from the methods of previous sections by
the fact that it requires the evaluation of both the function f(x) and the derivative
f'(x), at arbitrary points x. The Newton-Raphson formula consists geometrically
of extending the tangent line at a current point x; until it crosses zero, then setting
the next guess x;4; to the abscissa of that zero crossing (see Figure 9.4.1). Alge-
braically, the method derives from the familiar Taylor series expansion of a function
in the neighborhood of a point,

fx+8) ~ f(x)+ f'(x)8 +

%52 + - (9.4.1)

For small enough values of §, and for well-behaved functions, the terms beyond
linear are unimportant, hence f(x + §) = 0 implies

Jf(x)
J'(x)

(9.4.2)
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Figure 9.4.1. Newton’s method extrapolates the local derivative to find the next estimate of the root. In
this example it works well and converges quadratically.

Newton-Raphson is not restricted to one dimension. The method readily gener-
alizes to multiple dimensions, as we shall see in §9.6 and §9.7, below.

Far from a root, where the higher-order terms in the series are important, the
Newton-Raphson formula can give grossly inaccurate, meaningless corrections. For
instance, the initial guess for the root might be so far from the true root as to let the
search interval include a local maximum or minimum of the function. This can be
death to the method (see Figure 9.4.2). If an iteration places a trial guess near such
a local extremum, so that the first derivative nearly vanishes, then Newton-Raphson
sends its solution off to limbo, with vanishingly small hope of recovery. Figure 9.4.3
demonstrates another possible pathology.

Why is Newton-Raphson so powerful? The answer is its rate of convergence:
Within a small distance € of x, the function and its derivative are approximately

f(x+e) = f(x)+ef'(x)+ 62¥ +-e 9.4.3)
flx+e)= fl(x)+ef"(x)+ -
By the Newton-Raphson formula,
Xi4+1 = Xj — ]]:/((x;.)) 9.4.4)
so that
€y = ¢ — LD (9.4.5)

S (xi)
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Figure 9.4.2. Unfortunate case where Newton’s method encounters a local extremum and shoots off to
outer space. Here bracketing bounds, as in rtsafe, would save the day.

S

Figure 9.4.3. Unfortunate case where Newton’s method enters a nonconvergent cycle. This behavior is
often encountered when the function f is obtained, in whole or in part, by table interpolation. With a
better initial guess, the method would have succeeded.
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When a trial solution x; differs from the true root by €;, we can use (9.4.3) to express
f(xi), f/(x;)in (9.4.4) in terms of ¢; and derivatives at the root itself. The result is
a recurrence relation for the deviations of the trial solutions

€ir1 = _e2 S (x)
’ "2f7(x)

Equation (9.4.6) says that Newton-Raphson converges quadratically (cf. equa-
tion 9.2.3). Near a root, the number of significant digits approximately doubles
with each step. This very strong convergence property makes Newton-Raphson the
method of choice for any function whose derivative can be evaluated efficiently, and
whose derivative is continuous and nonzero in the neighborhood of a root.

Even where Newton-Raphson is rejected for the early stages of convergence
(because of its poor global convergence properties), it is very common to “polish
up” a root with one or two steps of Newton-Raphson, which can multiply by two or
four its number of significant figures.

For an efficient realization of Newton-Raphson, the user provides a routine
that evaluates both f(x) and its first derivative f’(x) at the point x. The Newton-
Raphson formula can also be applied using a numerical difference to approximate
the true local derivative,

(9.4.6)

Fx) ~ f(X+d;)—f(X)
X

This is not, however, a recommended procedure for the following reasons: (i) You
are doing two function evaluations per step, so at best the superlinear order of con-
vergence will be only +/2. (ii) If you take dx too small, you will be wiped out by
roundoff, while if you take it too large, your order of convergence will be only linear,
no better than using the initial evaluation f’(x¢) for all subsequent steps. Therefore,
Newton-Raphson with numerical derivatives is (in one dimension) always dominated
by Brent’s method (§9.3). (In multidimensions, where there is a paucity of available
methods, Newton-Raphson with numerical derivatives must be taken more seriously.
See §9.6 — §9.7.)

The following routine invokes a user-supplied structure that supplies the func-
tion value and the derivative. The function value is returned in the usual way as
a functor by overloading operator (), while the derivative is returned by the df
function in the structure. For example, to find a root of the Bessel function Jo(x)
(derivative —J; (x)) you would have a structure like

(9.4.7)

struct Funcd {
Bessjy bess;
Doub operator() (const Doub x) {
return bess.jOo(x);
}
Doub df (const Doub x) {
return -bess.jl(x);
}
};

(While you can use any name for Funcd, the name df is fixed.) Your code should
then create an instance of this structure and pass it to rtnewt:

Funcd £fx;
Doub root=rtnewt(fx,x1,x2,xacc);
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The routine rtnewt includes input bounds on the root x1 and x2 simply to be consis-
tent with previous root-finding routines: Newton does not adjust bounds, and works
only on local information at the point x. The bounds are used only to pick the mid-
point as the first guess, and to reject the solution if it wanders outside of the bounds.

template <class T>
Doub rtnewt(T &funcd, const Doub x1, const Doub x2, const Doub xacc) {
Using the Newton-Raphson method, return the root of a function known to lie in the interval
[x1,x2]. The root will be refined until its accuracy is known within *xacc. funcd is a user-
supplied struct that returns the function value as a functor and the first derivative of the function
at the point x as the function df (see text).
const Int JMAX=20; Set to maximum number of iterations.
Doub rtn=0.5%(x1+x2); Initial guess.
for (Int j=0;j<JMAX;j++) {
Doub f=funcd(rtn);
Doub df=funcd.df (rtn);
Doub dx=f/df;
rtn -= dx;
if ((x1-rtn)*(rtn-x2) < 0.0)
throw("Jumped out of brackets in rtnewt");
if (abs(dx) < xacc) return rtn; Convergence.
}

throw("Maximum number of iterations exceeded in rtnewt");

While Newton-Raphson’s global convergence properties are poor, it is fairly
easy to design a fail-safe routine that utilizes a combination of bisection and Newton-
Raphson. The hybrid algorithm takes a bisection step whenever Newton-Raphson
would take the solution out of bounds, or whenever Newton-Raphson is not reducing
the size of the brackets rapidly enough.

template <class T>
Doub rtsafe(T &funcd, const Doub x1, const Doub x2, const Doub xacc) {
Using a combination of Newton-Raphson and bisection, return the root of a function bracketed
between x1 and x2. The root will be refined until its accuracy is known within *xacc. funcd
is a user-supplied struct that returns the function value as a functor and the first derivative of
the function at the point x as the function df (see text).

const Int MAXIT=100; Maximum allowed number of iterations.

Doub xh,x1;

Doub fl=funcd(xl);

Doub fh=funcd(x2);

if ((f1 > 0.0 && fh > 0.0) || (f1 < 0.0 && fh < 0.0))

throw("Root must be bracketed in rtsafe");
if (f1 == 0.0) return x1;
if (fh == 0.0) return x2;

if (f1 < 0.0) { Orient the search so that f(x1) < 0.
x1=x1;
xh=x2;
} else {
xh=x1;
x1=x2;
}
Doub rts=0.5%(x1+x2); Initialize the guess for root,
Doub dxold=abs(x2-x1); the “stepsize before last,”
Doub dx=dxold; and the last step.

Doub f=funcd(rts);
Doub df=funcd.df (rts);
for (Int j=0;j<MAXIT;j++) { Loop over allowed iterations.
if ((((rts-xh)*df-f)*((rts-x1)*df-f) > 0.0) Bisect if Newton out of range,
|| (abs(2.0%f) > abs(dxold*df))) { or not decreasing fast enough.
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dxold=dx;
dx=0.5*(xh-x1) ;
rts=x1+dx;
if (x1 == rts) return rts; Change in root is negligible.
} else { Newton step acceptable. Take it.
dxold=dx;
dx=£f/df;
Doub temp=rts;
rts -= dx;
if (temp == rts) return rts;
}
if (abs(dx) < xacc) return rts; Convergence criterion.

Doub f=funcd(rts);

Doub df=funcd.df(rts);

The one new function evaluation per iteration.

if (f < 0.0) Maintain the bracket on the root.
xl=rts;

else
xh=rts;

}

throw("Maximum number of iterations exceeded in rtsafe");

For many functions, the derivative f’(x) often converges to machine accuracy
before the function f(x) itself does. When that is the case one need not subsequently
update f’(x). This shortcut is recommended only when you confidently understand
the generic behavior of your function, but it speeds computations when the derivative
calculation is laborious. (Formally, this makes the convergence only linear, but if the
derivative isn’t changing anyway, you can do no better.)

9.4.1 Newton-Raphson and Fractals

An interesting sidelight to our repeated warnings about Newton-Raphson’s un-
predictable global convergence properties — its very rapid local convergence notwith-
standing — is to investigate, for some particular equation, the set of starting values
from which the method does, or doesn’t, converge to a root.

Consider the simple equation

22-1=0 (9.4.8)

whose single real root is z = 1, but which also has complex roots at the other two
cube roots of unity, exp(£2mi/3). Newton’s method gives the iteration

Z; —1

Zj+1 = Zj — 2 (949)

3z¢

J
Up to now, we have applied an iteration like equation (9.4.9) only for real start-
ing values zg, but in fact all of the equations in this section also apply in the complex
plane. We can therefore map out the complex plane into regions from which a start-
ing value zy, iterated in equation (9.4.9), will, or won’t, converge to z = 1. Naively,
we might expect to find a “basin of convergence” somehow surrounding the root
z = 1. We surely do not expect the basin of convergence to fill the whole plane, be-
cause the plane must also contain regions that converge to each of the two complex
roots. In fact, by symmetry, the three regions must have identical shapes. Perhaps

they will be three symmetric 120° wedges, with one root centered in each?



462 Chapter 9. Root Finding and Nonlinear Sets of Equations

P e

y

] w \
-2 -1 0 1 2

Figure 9.4.4. The complex z-plane with real and imaginary components in the range (—2, 2). The black
region is the set of points from which Newton’s method converges to the root z = 1 of the equation
z3—1=0.1Its shape is fractal.

Now take a look at Figure 9.4.4, which shows the result of a numerical explo-
ration. The basin of convergence does indeed cover 1/3 the area of the complex
plane, but its boundary is highly irregular — in fact, fractal. (A fractal, so called, has
self-similar structure that repeats on all scales of magnification.) How does this frac-
tal emerge from something as simple as Newton’s method and an equation as simple
as (9.4.8)? The answer is already implicit in Figure 9.4.2, which showed how, on the
real line, a local extremum causes Newton’s method to shoot off to infinity. Suppose
one is slightly removed from such a point. Then one might be shot off not to infin-
ity, but — by luck — right into the basin of convergence of the desired root. But
that means that in the neighborhood of an extremum there must be a tiny, perhaps
distorted, copy of the basin of convergence — a kind of “one-bounce away” copy.
Similar logic shows that there can be “two-bounce” copies, “three-bounce” copies,
and so on. A fractal thus emerges.

Notice that, for equation (9.4.8), almost the whole real axis is in the domain of
convergence for the root z = 1. We say “almost” because of the peculiar discrete
points on the negative real axis whose convergence is indeterminate (see figure).
What happens if you start Newton’s method from one of these points? (Try it.)
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9.4.2 Halley’s Method

Edmund Halley (1656—1742) was a contemporary and close friend of Newton.
His contribution to root finding was to extend Newton’s method to use information
from the next term in the (as we would now say it) Taylor series, the second deriva-
tive f”(x). Omitting a straightforward derivation, the update formula (9.4.4) now
becomes
S (xi)

o1 47559)
You can see that the update scheme is essentially Newton-Raphson, but with an extra,
hopefully small, correction term in the denominator.

It only makes sense to use Halley’s method when it is easy to calculate " (x;),
often from pieces of functions that are already being used in calculating f(x;) and
f'(x;). Otherwise, you might just as well do another step of ordinary Newton-
Raphson. Halley’s method converges cubically; in the final convergence each it-
eration triples the number of significant digits. But two steps of Newton-Raphson
quadruple that number.

There is no reason to think that the basin of convergence of Halley’s method is
generally larger than Newton’s; more often it is probably smaller. So don’t look to
Halley’s method for better convergence in the large.

Nevertheless, when you can get a second derivative almost for free, you can
often usefully shave an iteration or two off Newton-Raphson by something like this,

Xip1 = xi — ]]:/((x;i))/max [0.8,min (1.2, 1- fg;)/(ijl’)(:l))] (9.4.11)

the idea being to limit the influence of the higher-order correction, so that it gets used
only in the endgame. We have already used Halley’s method in just this fashion in
§6.2, §6.4, and §6.14.

Xi41 = Xi — (9.4.10)

CITED REFERENCES AND FURTHER READING:

Acton, FES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), §8.4.

Ortega, J., and Rheinboldt, W. 1970, lterative Solution of Nonlinear Equations in Several Vari-
ables (New York: Academic Press); reprinted 2000 (Philadelphia: S.I.A.M.).

Mandelbrot, B.B. 1983, The Fractal Geometry of Nature (San Francisco: W.H. Freeman).
Peitgen, H.-O., and Saupe, D. (eds.) 1988, The Science of Fractal Images (New York: Springer).

9.5 Roots of Polynomials

Here we give a few methods for finding roots of polynomials. These will serve
for most practical problems involving polynomials of low-to-moderate degree or for
well-conditioned polynomials of higher degree. Not as well appreciated as it ought
to be is the fact that some polynomials are exceedingly ill-conditioned. The tiniest
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changes in a polynomial’s coefficients can, in the worst case, send its roots sprawling
all over the complex plane. (An infamous example due to Wilkinson is detailed by
Acton [1].)

Recall that a polynomial of degree n will have n roots. The roots can be real
or complex, and they might not be distinct. If the coefficients of the polynomial are
real, then complex roots will occur in pairs that are conjugate; i.e., if x; = a + bi is
a root, then x, = a — bi will also be a root. When the coefficients are complex, the
complex roots need not be related.

Multiple roots, or closely spaced roots, produce the most difficulty for numer-
ical algorithms (see Figure 9.5.1). For example, P(x) = (x — a)? has a double
real root at x = a. However, we cannot bracket the root by the usual technique of
identifying neighborhoods where the function changes sign, nor will slope-following
methods such as Newton-Raphson work well, because both the function and its
derivative vanish at a multiple root. Newton-Raphson may work, but slowly, since
large roundoff errors can occur. When a root is known in advance to be multiple, then
special methods of attack are readily devised. Problems arise when (as is generally
the case) we do not know in advance what pathology a root will display.

9.5.1 Deflation of Polynomials

When seeking several or all roots of a polynomial, the total effort can be sig-
nificantly reduced by the use of deflation. As each root r is found, the polynomial
is factored into a product involving the root and a reduced polynomial of degree one
less than the original, i.e., P(x) = (x — r)Q(x). Since the roots of Q are exactly
the remaining roots of P, the effort of finding additional roots decreases, because
we work with polynomials of lower and lower degree as we find successive roots.
Even more important, with deflation we can avoid the blunder of having our iterative
method converge twice to the same (nonmultiple) root instead of separately to two
different roots.

Deflation, which amounts to synthetic division, is a simple operation that acts
on the array of polynomial coefficients. The concise code for synthetic division
by a monomial factor was given in §5.1. You can deflate complex roots either by
converting that code to complex data type, or else — in the case of a polynomial with
real coefficients but possibly complex roots — by deflating by a quadratic factor,

[x —(a+ib)][x — (a —ib)] = x* —2ax + (a* + b?) (9.5.1)

The routine poldiv in §5.1 can be used to divide the polynomial by this factor.
Deflation must, however, be utilized with care. Because each new root is known
with only finite accuracy, errors creep into the determination of the coefficients of
the successively deflated polynomial. Consequently, the roots can become more and
more inaccurate. It matters a lot whether the inaccuracy creeps in stably (plus or
minus a few multiples of the machine precision at each stage) or unstably (erosion of
successive significant figures until the results become meaningless). Which behavior
occurs depends on just how the root is divided out. Forward deflation, where the
new polynomial coefficients are computed in the order from the highest power of x
down to the constant term, was illustrated in §5.1. This turns out to be stable if the
root of smallest absolute value is divided out at each stage. Alternatively, one can do
backward deflation, where new coefficients are computed in order from the constant
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Figure 9.5.1. (a) Linear, quadratic, and cubic behavior at the roots of polynomials. Only under high
magnification (b) does it become apparent that the cubic has one, not three, roots, and that the quadratic
has two roots rather than none.

term up to the coefficient of the highest power of x. This is stable if the remaining
root of largest absolute value is divided out at each stage.

A polynomial whose coefficients are interchanged “end-to-end,” so that the con-
stant becomes the highest coefficient, etc., has its roots mapped into their reciprocals.
(Proof: Divide the whole polynomial by its highest power x” and rewrite it as a poly-
nomial in 1/x.) The algorithm for backward deflation is therefore virtually identical
to that of forward deflation, except that the original coefficients are taken in reverse
order and the reciprocal of the deflating root is used. Since we will use forward de-
flation below, we leave to you the exercise of writing a concise coding for backward
deflation (as in §5.1). For more on the stability of deflation, consult [2].

To minimize the impact of increasing errors (even stable ones) when using de-
flation, it is advisable to treat roots of the successively deflated polynomials as only
tentative roots of the original polynomial. One then polishes these tentative roots
by taking them as initial guesses that are to be re-solved for, using the nondeflated
original polynomial P. Again you must beware lest two deflated roots are inaccurate
enough that, under polishing, they both converge to the same undeflated root; in that
case you gain a spurious root multiplicity and lose a distinct root. This is detectable,
since you can compare each polished root for equality to previous ones from dis-
tinct tentative roots. When it happens, you are advised to deflate the polynomial just
once (and for this root only), then again polish the tentative root, or use Maehly’s
procedure (see equation 9.5.29 below).

Below we say more about techniques for polishing real and complex-conjugate
tentative roots. First, let’s get back to overall strategy.

There are two schools of thought about how to proceed when faced with a poly-
nomial of real coefficients. One school says to go after the easiest quarry, the real,
distinct roots, by the same kinds of methods that we have discussed in previous sec-
tions for general functions, i.e., trial-and-error bracketing followed by a safe Newton-
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Raphson as in rtsafe. Sometimes you are only interested in real roots, in which case
the strategy is complete. Otherwise, you then go after quadratic factors of the form
(9.5.1) by any of a variety of methods. One such is Bairstow’s method, which we will
discuss below in the context of root polishing. Another is Muller’s method, which
we here briefly discuss.

9.5.2 Muller’s Method

Muller’s method generalizes the secant method but uses quadratic interpolation
among three points instead of linear interpolation between two. Solving for the ze-
ros of the quadratic allows the method to find complex pairs of roots. Given three
previous guesses for the root x;_», x;—1, X;, and the values of the polynomial P(x)
at those points, the next approximation x; 4 is produced by the following formulas,

X X1
g= J1TH=1
Xi—1 — Xi—2
A=qP(x;) —q(1 +q)P(xi—1) + ¢*P(xi—2) (9.5.2)

B=Q2q+ )P(x;)— (1 +¢)*P(xi—1) + ¢*P(xi—2)
C=((1+q)P(x;)

followed by
2C

B+ VB?—-4AC

where the sign in the denominator is chosen to make its absolute value or modulus
as large as possible. You can start the iterations with any three values of x that you
like, e.g., three equally spaced values on the real axis. Note that you must allow
for the possibility of a complex denominator, and subsequent complex arithmetic, in
implementing the method.

Muller’s method is sometimes also used for finding complex zeros of analytic
functions (not just polynomials) in the complex plane, for example in the IMSL
routine ZANLY [3].

Xi+1 = X;j — (Xj — Xj—1) (9.5.3)

9.5.3 Laguerre’s Method

The second school regarding overall strategy happens to be the one to which
we belong. That school advises you to use one of a very small number of methods
that will converge (though with greater or lesser efficiency) to all types of roots: real,
complex, single, or multiple. Use such a method to get tentative values for all n roots
of your nth degree polynomial. Then go back and polish them as you desire.

Laguerre’s method is by far the most straightforward of these general, complex
methods. It does require complex arithmetic, even while converging to real roots;
however, for polynomials with all real roots, it is guaranteed to converge to a root
from any starting point. For polynomials with some complex roots, little is theoreti-
cally proved about the method’s convergence. Much empirical experience, however,
suggests that nonconvergence is extremely unusual and, further, can almost always
be fixed by a simple scheme to break a nonconverging limit cycle. (This is im-
plemented in our routine below.) An example of a polynomial that requires this
cycle-breaking scheme is one of high degree (Z 20), with all its roots just outside of
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the complex unit circle, approximately equally spaced around it. When the method
converges on a simple complex zero, it is known that its convergence is third order.
In some instances the complex arithmetic in the Laguerre method is no disad-
vantage, since the polynomial itself may have complex coefficients.
To motivate (although not rigorously derive) the Laguerre formulas we can note
the following relations between the polynomial and its roots and derivatives:

Po(x) =(x —x0)(x —x1)...(x —Xp—1) (9.5.4)
In|P,(x)| =In|x —xo| +In|x —x1| + ...+ In|x — x| (9.5.5)
dIn|P 1 1 1 P/
n| ”(x)|=+ + +... 44— =""=G (956
dx X—X9 X—X1 X — Xp_1 P,
d?In|P, 1 1 1
_ P _ +ot—
dx? (x —x0)%  (x —x1)? (x — xp-1)?
P/ 2 p
=2 - = (9.5.7)
Py Py

Starting from these relations, the Laguerre formulas make what Acton [1] nicely calls
“a rather drastic set of assumptions”: The root xo that we seek is assumed to be
located some distance a from our current guess x, while all other roots are assumed
to be located at a distance b,

X—Xxpo=a, x-—x;=2>h, i=1,2,....,n—1 (9.5.8)

Then we can express (9.5.6) and (9.5.7) as

1 —1

~+l =g (9.5.9)
a b

1 n—1

pl b = H (9.5.10)
which yields as the solution for a

n

(9.5.11)

TGt Ju—DuH=-0?)

where the sign should be taken to yield the largest magnitude for the denominator.
Since the factor inside the square root can be negative, a can be complex. (A more
rigorous justification of equation 9.5.11 is in [4].)

The method operates iteratively: For a trial value x, calculate a by equation
(9.5.11). Then use x —a as the next trial value. Continue until a is sufficiently small.

The following routine implements the Laguerre method to find one root of a
given polynomial of degree m, whose coefficients can be complex. As usual, the first
coefficient, a[0], is the constant term, while a[m] is the coefficient of the highest
power of x. The routine implements a simplified version of an elegant stopping
criterion due to Adams [5], which neatly balances the desire to achieve full machine
accuracy, on the one hand, with the danger of iterating forever in the presence of
roundoff error, on the other.
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void laguer(VecComplex_I &a, Complex &x, Int &its) {
Given the m+1 complex coefficients a[0. .m] of the polynomial 37— a[i]x’, and given a complex
value x, this routine improves x by Laguerre's method until it converges, within the achievable
roundoff limit, to a root of the given polynomial. The number of iterations taken is returned as
its.
const Int MR=8,MT=10,MAXIT=MT*MR;
const Doub EPS=numeric_limits<Doub>::epsilon();
Here EPS is the estimated fractional roundoff error. We try to break (rare) limit cycles with
MR different fractional values, once every MT steps, for MAXIT total allowed iterations.
static const Doub frac[MR+1]=
{0.0,0.5,0.25,0.75,0.13,0.38,0.62,0.88,1.0};
Fractions used to break a limit cycle.
Complex dx,x1,b,d,f,g,h,sq,gp,gm,g2;
Int m=a.size()-1;
for (Int iter=1;iter<=MAXIT;iter++) { Loop over iterations up to allowed maximum.
its=iter;
b=a[m];
Doub err=abs(b);
d=£=0.0;
Doub abx=abs(x);
for (Int j=m-1;j>=0;j--) { Efficient computation of the polynomial and
f=x*f+d; its first two derivatives. f stores P”/2.
d=x*d+b;
b=xxb+alj];
err=abs(b)+abx*err;
}
err *= EPS;
Estimate of roundoff error in evaluating polynomial.
if (abs(b) <= err) return; We are on the root.
g=d/b; The generic case: Use Laguerre's formula.
g2=g*g;
h=g2-2.0*f/b;
sq=sqrt (Doub(m-1) * (Doub (m) *h-g2) ) ;
gpP=g+sq;
gn=g-sq;
Doub abp=abs(gp) ;
Doub abm=abs (gm) ;
if (abp < abm) gp=gm;
dx=MAX (abp,abm) > 0.0 ? Doub(m)/gp : polar(l+abx,Doub(iter));
x1=x-dx;
if (x == x1) return; Converged.
if (iter % MT !'= 0) x=x1;
else x -= frac[iter/MT]*dx;
Every so often we take a fractional step, to break any limit cycle (itself a rare occur-
rence).
}
throw("too many iterations in laguer");
Very unusual; can occur only for complex roots. Try a different starting guess.

Here is a driver routine that calls 1aguer in succession for each root, performs
the deflation, optionally polishes the roots by the same Laguerre method — if you
are not going to polish in some other way — and finally sorts the roots by their real
parts. (We will use this routine in Chapter 13.)

void zroots(VecComplex_I &a, VecComplex_0 &roots, const Bool &polish)
Given the m+1 complex coefficients a[0..m] of the polynomial Z?;O a(i)x’, this routine suc-
cessively calls laguer and finds all m complex roots in roots[0..m-1]. The boolean variable
polish should be input as true if polishing (also by Laguerre’s method) is desired, false if the
roots will be subsequently polished by other means.
{

const Doub EPS=1.0e-14; A small number.
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Int i,its;

Complex x,b,c;

Int m=a.size()-1;
VecComplex ad(m+1);

for (Int j=0;j<=m;j++) adljl=aljl; Copy of coefficients for successive deflation.

for (Int j=m-1;j>=0;j--) {

Loop over each root to be found.

x=0.0; Start at zero to favor convergence to small-

VecComplex ad_v(j+2);

for (Int jj=0;jj<j+2;jj++) ad_v[jjl=adljj]

laguer(ad_v,x,its);

if (abs(imag(x)) <= 2.0*EPS*abs(real(x)))
x=Complex (real(x),0.0);

roots[jl=x;

b=ad[j+1]; Forward deflation.

for (Int jj=j;jj>=0;jj—-) {
c=ad[jjl;
ad[jjl=b;
b=x*b+c;
}
}
if (polish)
for (Int j=0;j<m;j++)

laguer(a,roots[j],its); cients.

for (Int j=1;j<m;j++) {

x=roots[j]; sertion.

for (i=j-1;i>=0;i--) {
if (real(roots[i]) <= real(x)) break;
roots[i+1]=roots[i];

}

roots[i+1]=x;

9.5.4 Eigenvalue Methods

est remaining root, and return the root.

Polish the roots using the undeflated coeffi-

Sort roots by their real parts by straight in-

The eigenvalues of a matrix A are the roots of the “characteristic polynomial”
P(x) = det[A — xI]. However, as we will see in Chapter 11, root finding is not gen-
erally an efficient way to find eigenvalues. Turning matters around, we can use the
more efficient eigenvalue methods that are discussed in Chapter 11 to find the roots
of arbitrary polynomials. You can easily verify (see, e.g., [6]) that the characteristic

polynomial of the special m x m companion matrix

_am—1 __Am-—2
am am
1 0
A= 0 1
0 0

is equivalent to the general polynomial

m
P(x) = Zaixi
i=0

ai

am
0

0

ao
am
0
0

(9.5.12)

(9.5.13)

If the coefficients a; are real, rather than complex, then the eigenvalues of A can
be found using the routine Unsymmeig in §11.6 — §11.7 (see discussion there). This
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method, implemented in the routine zrhqr following, is typically about a factor 2
slower than zroots (above). However, for some classes of polynomials, it is a more
robust technique, largely because of the fairly sophisticated convergence methods
embodied in Unsymmeig. If your polynomial has real coefficients, and you are hav-
ing trouble with zroots, then zrhqr is a recommended alternative.

void zrhqr(VecDoub_I &a, VecComplex_0 &rt)

Find all the roots of a polynomial with real coefficients, inn=0 a(i)x?, given the coefficients
al0..m]. The method is to construct an upper Hessenberg matrix whose eigenvalues are the
desired roots and then use the routine Unsymmeig. The roots are returned in the complex vector
rt[0..m-1], sorted in descending order by their real parts.
{
Int m=a.size()-1;
MatDoub hess(m,m);
for (Int k=0;k<m;k++) { Construct the matrix
hess[0] [k] = -a[m-k-1]/a[m];
for (Int j=1;j<m;j++) hess[j][k]=0.0;
if (k !'= m-1) hess[k+1][k]=1.0;
}
Unsymmeig h(hess, false, true); Find its eigenvalues.
for (Int j=0;j<m;j++)
rt[jl=h.wriljl;

9.5.5 Other Sure-Fire Techniques

The Jenkins-Traub method has become practically a standard in black-box poly-
nomial root finders, e.g., in the IMSL library [3]. The method is too complicated to
discuss here, but is detailed, with references to the primary literature, in [4].

The Lehmer-Schur algorithm is one of a class of methods that isolate roots in
the complex plane by generalizing the notion of one-dimensional bracketing. It is
possible to determine efficiently whether there are any polynomial roots within a
circle of given center and radius. From then on it is a matter of bookkeeping to hunt
down all the roots by a series of decisions regarding where to place new trial circles.
Consult [1] for an introduction.

9.5.6 Techniques for Root Polishing

Newton-Raphson works very well for real roots once the neighborhood of a
root has been identified. The polynomial and its derivative can be efficiently si-
multaneously evaluated as in §5.1. For a polynomial of degree n with coefficients
c[0]...c[n], the following segment of code carries out one cycle of Newton-
Raphson:

p=c[n]*x+c[n-1];

pl=c[n];
for(i=n-2;i>=0;i--) {
pl=p+pl*x;
p=clil+p*x;
}
if (pl == 0.0) throw("derivative should not vanish");
x -= p/pi;

Once all real roots of a polynomial have been polished, one must polish the
complex roots, either directly or by looking for quadratic factors.
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Direct polishing by Newton-Raphson is straightforward for complex roots if the
above code is converted to complex data types. With real polynomial coefficients,
note that your starting guess (tentative root) must be off the real axis, otherwise you
will never get off that axis — and may get shot off to infinity by a minimum or
maximum of the polynomial.

For real polynomials, the alternative means of polishing complex roots (or, for that mat-
ter, double real roots) is Bairstow’s method, which seeks quadratic factors. The advantage of
going after quadratic factors is that it avoids all complex arithmetic. Bairstow’s method seeks
a quadratic factor that embodies the two roots x = a & ib, namely

x2 = 2ax + (a* + bz) =x24+Bx+C (9.5.14)
In general, if we divide a polynomial by a quadratic factor, there will be a linear remainder
P(x) = (x> + Bx + C)Q(x) + Rx + S. (9.5.15)

Given B and C, R and S can be readily found, by polynomial division (§5.1). We can consider
R and S to be adjustable functions of B and C, and they will be zero if the quadratic factor is
a divisor of P(x).

In the neighborhood of a root, a first-order Taylor series expansion approximates the
variation of R, S with respect to small changes in B, C:

IR aR

R(B +8B,C +8C) ~ R(B,C) + — 8B + —§C (9.5.16)
B aC
3s 3S

S(B +6B.C +8C) ~ S(B.C) + 5288 + 5 ~6C (9.5.17)

To evaluate the partial derivatives, consider the derivative of (9.5.15) with respect to C. Since
P(x) is a fixed polynomial, it is independent of C, hence

a0 dR as
0=(x*+Bx+C)—= —x+ — 5.18
(x*+ Bx + )8C+Q(x)+8cx+ac (9.5.18)
which can be rewritten as
00  OR as
2
— = B C)— + — — 9.5.19
O(x) =(x*+ Bx + )8C+8Cx+8C ( )
Similarly, P(x) is independent of B, so differentiating (9.5.15) with respect to B gives
a0  0R as
— — 2 = - -
xQ(x)=x"+Bx+C) 3B + T + 3B (9.5.20)

Now note that equation (9.5.19) matches equation (9.5.15) in form. Thus if we perform a sec-
ond synthetic division of P(x), i.e., a division of Q(x) by the same quadratic factor, yielding
aremainder R1x + S, then
R S
oc — ' ac
To get the remaining partial derivatives, evaluate equation (9.5.20) at the two roots of the
quadratic, x4 and x—. Since

=81 (9.5.21)

O(x+) = Rix+ + 81 (9.5.22)
we get
OR +3S— (R + 81) (9.5.23)
an+ 9B X (K1 X4 1 5.
oR aS
—Xx— + — = —x_(R1x— + S1) (9.5.24)

0B 0B
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Solve these two equations for the partial derivatives, using

X+ +x—-=-B xpx—=0C (9.5.25)
and find

oR S

— =BR; - S — =CR 9.5.26

3B 1 1 9B 1 ( )

Bairstow’s method now consists of using Newton-Raphson in two dimensions (which is
actually the subject of the next section) to find a simultaneous zero of R and S. Synthetic
division is used twice per cycle to evaluate R, S and their partial derivatives with respect to
B, C. Like one-dimensional Newton-Raphson, the method works well in the vicinity of a root
pair (real or complex), but it can fail miserably when started at a random point. We therefore
recommend it only in the context of polishing tentative complex roots.

void groot(VecDoub_I &p, Doub &b, Doub &c, const Doub eps)
Given n+1 coefficients p[0. .n] of a polynomial of degree n, and trial values for the coefficients
of a quadratic factor x*x+b*x+c, improve the solution until the coefficients b, c change by less
than eps. The routine poldiv in §5.1 is used.
{
const Int ITMAX=20; At most ITMAX iterations.
const Doub TINY=1.0e-14;
Doub sc,sb,s,rc,rb,r,dv,delc,delb;
Int n=p.size()-1;
VecDoub d(3),q(n+1),qq(n+1) ,rem(n+1);
d[2]=1.0;
for (Int iter=0;iter<ITMAX;iter++) {
d[1]=b;
d[0]=c;
poldiv(p,d,q,rem);
s=rem[0] ; First division, r,s.
r=rem[1];
poldiv(q,d,qq,rem);
sb = -cx(rc = -rem[1]); Second division, partial r,s with respect to
rb = -bxrc+(sc = -rem[0]); c.
dv=1.0/(sb*rc-sc*rb) ; Solve 2x2 equation.
delb=(r*sc-s*rc)*dv;
delc=(-r*sb+s*rb)*dv;
b += (delb=(r*sc-s*rc)*dv);
c += (delc=(-r*sb+s*rb)*dv) ;
if ((abs(delb) <= eps*abs(b) || abs(b) < TINY)
&& (abs(delc) <= epsx*abs(c) || abs(c) < TINY)) {
return; Coefficients converged.
}
}

throw("Too many iterations in routine qroot");

We have already remarked on the annoyance of having two tentative roots col-
lapse to one value under polishing. You are left not knowing whether your polishing
procedure has lost a root, or whether there is actually a double root, which was
split only by roundoftf errors in your previous deflation. One solution is deflate-and-
repolish; but deflation is what we are trying to avoid at the polishing stage. An alter-
native is Maehly’s procedure. Maehly pointed out that the derivative of the reduced
polynomial

_ P(x)
Pi(x) = TS (9.5.27)

can be written as
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P'(x) P(x)

Pi(x) = (x—x0) - (X —Xj_1) (x—x0) (X —xj_

j—1
) > (x—xp)7' (9.528)
i=0

Hence one step of Newton-Raphson, taking a guess x; into a new guess x4, can
be written as

P(Xk)
P'(xk) — P (i) Yo 2o (o — xi) ™!

Xk+1 = Xk — (9.5.29)

This equation, if used with i ranging over the roots already polished, will prevent a
tentative root from spuriously hopping to another one’s true root. It is an example of
so-called zero suppression as an alternative to true deflation.

Muller’s method, which was described above, can also be a useful adjunct at
the polishing stage.
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9.6 Newton-Raphson Method for Nonlinear
Systems of Equations

We make an extreme, but wholly defensible, statement: There are no good, gen-
eral methods for solving systems of more than one nonlinear equation. Furthermore,
it is not hard to see why (very likely) there never will be any good, general methods:
Consider the case of two dimensions, where we want to solve simultaneously

fx.y)=0

2(x.y) = 0 (9.6.1)
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Figure 9.6.1. Solution of two nonlinear equations in two unknowns. Solid curves refer to f(x,y),
dashed curves to g(x, y). Each equation divides the (x, y)-plane into positive and negative regions,
bounded by zero curves. The desired solutions are the intersections of these unrelated zero curves. The
number of solutions is a priori unknown.

The functions f and g are two arbitrary functions, each of which has zero
contour lines that divide the (x, y)-plane into regions where their respective function
is positive or negative. These zero contour boundaries are of interest to us. The
solutions that we seek are those points (if any) that are common to the zero contours
of f and g (see Figure 9.6.1). Unfortunately, the functions f and g have, in general,
no relation to each other at all! There is nothing special about a common point from
either f’s point of view, or from g’s. In order to find all common points, which
are the solutions of our nonlinear equations, we will (in general) have to do neither
more nor less than map out the full zero contours of both functions. Note further that
the zero contours will (in general) consist of an unknown number of disjoint closed
curves. How can we ever hope to know when we have found all such disjoint pieces?

For problems in more than two dimensions, we need to find points mutually
common to N unrelated zero-contour hypersurfaces, each of dimension N — 1. You
see that root finding becomes virtually impossible without insight! You will almost
always have to use additional information, specific to your particular problem, to an-
swer such basic questions as, “Do I expect a unique solution?” and “Approximately
where?” Acton [1] has a good discussion of some of the particular strategies that can
be tried.

In this section we discuss the simplest multidimensional root-finding method,
Newton-Raphson. This method gives a very efficient means of converging to a root,
if you have a sufficiently good initial guess. It can also spectacularly fail to converge,
indicating (though not proving) that your putative root does not exist nearby. In §9.7
we discuss more sophisticated implementations of the Newton-Raphson method,
which try to improve on Newton-Raphson’s poor global convergence. A multidi-
mensional generalization of the secant method, called Broyden’s method, is also
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discussed in §9.7.

A typical problem gives N functional relations to be zeroed, involving variables
xi,i=0,1,...,N —1:

F,-(xo,xl,...,xN_l):O i=0,1,...,N—1. (962)
We let x denote the entire vector of values x; and F denote the entire vector of

functions F;. In the neighborhood of x, each of the functions F; can be expanded in
Taylor series:

N—-1
F.
Fi(x +68x) = F;(x)+ Y _ Lsxj + 0(8x?). (9.6.3)
=0 3x]'

The matrix of partial derivatives appearing in equation (9.6.3) is the Jacobian matrix
J:

Jij = OF; (9.6.4)
lj —_— axj . . .
In matrix notation equation (9.6.3) is
F(x +6x) = F(x) + J - 8x + 0(6x?). (9.6.5)

By neglecting terms of order §x? and higher and by setting F(x + §x) = 0, we
obtain a set of linear equations for the corrections §x that move each function closer
to zero simultaneously, namely

J.8x = —F. (9.6.6)

Matrix equation (9.6.6) can be solved by LU decomposition as described in
§2.3. The corrections are then added to the solution vector,

Xnew = Xold + 6X 9.6.7)

and the process is iterated to convergence. In general it is a good idea to check the
degree to which both functions and variables have converged. Once either reaches
machine accuracy, the other won’t change.

The following routine mnewt performs ntrial iterations starting from an ini-
tial guess at the solution vector x[0. .n-1]. Iteration stops if either the sum of the
magnitudes of the functions F; is less than some tolerance tolf, or the sum of the
absolute values of the corrections to dx; is less than some tolerance tolx. mnewt
calls a user-supplied function with the fixed name usrfun, which must provide the
function values F and the Jacobian matrix J. (The more sophisticated methods later
in this chapter will have a more versatile interface.) If J is difficult to compute ana-
lytically, you can try having usrfun invoke the routine NRfdjac of §9.7 to compute
the partial derivatives by finite differences. You should not make ntrial too big;
rather, inspect to see what is happening before continuing for some further iterations.
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void usrfun(VecDoub_I &x, VecDoub_0 &fvec, MatDoub_0 &fjac);

void mnewt(const Int ntrial, VecDoub_IO &x, const Doub tolx, const Doub tolf) {
Given an initial guess x[0. .n-1] for a root in n dimensions, take ntrial Newton-Raphson steps
to improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.

Int i,n=x.size();

VecDoub p(n),fvec(n);

MatDoub fjac(n,n);

for (Int k=0;k<ntrial;k++) {

usrfun(x,fvec,fjac); User function supplies function values at x in
Doub errf=0.0; fvec and Jacobian matrix in fjac.
for (i=0;i<n;i++) errf += abs(fvecl[i]); Check function convergence.
if (errf <= tolf) return;
for (i=0;i<n;i++) p[i] = -fvec[i]; Right-hand side of linear equations.
LUdcmp alu(fjac); Solve linear equations using LU decomposition.
alu.solve(p,p);
Doub errx=0.0; Check root convergence.
for (i=0;i<n;i++) { Update solution.
errx += abs(pl[il);
x[i] += plil;
}
if (errx <= tolx) return;
}
return;

9.6.1 Newton’s Method versus Minimization

In the next chapter, we will find that there are efficient general techniques for
finding a minimum of a function of many variables. Why is that task (relatively)
easy, while multidimensional root finding is often quite hard? Isn’t minimization
equivalent to finding a zero of an N-dimensional gradient vector, which is not so
different from zeroing an N -dimensional function? No! The components of a gra-
dient vector are not independent, arbitrary functions. Rather, they obey so-called
integrability conditions that are highly restrictive. Put crudely, you can always find a
minimum by sliding downhill on a single surface. The test of “downhillness” is thus
one-dimensional. There is no analogous conceptual procedure for finding a multidi-
mensional root, where “downhill” must mean simultaneously downhill in N separate
function spaces, thus allowing a multitude of trade-offs as to how much progress in
one dimension is worth compared with progress in another.

It might occur to you to carry out multidimensional root finding by collapsing all
these dimensions into one: Add up the sums of squares of the individual functions F;
to get a master function [ that (i) is positive-definite and (ii) has a global minimum of
zero exactly at all solutions of the original set of nonlinear equations. Unfortunately,
as you will see in the next chapter, the efficient algorithms for finding minima come
to rest on global and local minima indiscriminately. You will often find, to your great
dissatisfaction, that your function F has a great number of local minima. In Figure
9.6.1, for example, there is likely to be a local minimum wherever the zero contours
of f and g make a close approach to each other. The point labeled M is such a point,
and one sees that there are no nearby roots.

However, we will now see that sophisticated strategies for multidimensional
root finding can in fact make use of the idea of minimizing a master function F, by
combining it with Newton’s method applied to the full set of functions F;. While
such methods can still occasionally fail by coming to rest on a local minimum of F,



9.7 Globally Convergent Methods for Nonlinear Systems of Equations 477

they often succeed where a direct attack via Newton’s method alone fails. The next
section deals with these methods.

CITED REFERENCES AND FURTHER READING:

Acton, FE.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 14.[1]

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press).

Ortega, J., and Rheinboldt, W. 1970, lterative Solution of Nonlinear Equations in Several Vari-
ables (New York: Academic Press); reprinted 2000 (Philadelphia: S.I.A.M.).

9.7 Globally Convergent Methods for Nonlinear
Systems of Equations

We have seen that Newton’s method for solving nonlinear equations has an un-
fortunate tendency to wander off into the wild blue yonder if the initial guess is not
sufficiently close to the root. A global method [1] would be one that converges to
a solution from almost any starting point. Such global methods do exist for mini-
mization problems; an example is the quasi-Newton method that we will describe
in §10.9. In this section we will develop an algorithm that is an analogous quasi-
Newton method for multidimensional root finding. Alas, while it is better behaved
than Newton’s method, it is still not truly global.

What the method does do is combine the rapid local convergence of Newton’s
method with a higher-level strategy that guarantees at least some progress at each
step — either toward an actual root (usually), or else, hopefully rarely, toward the
situation labeled “no root here!” in Figure 9.6.1. In the latter case, the method rec-
ognizes the problem and signals failure. By contrast, Newton’s method can bounce
around forever, and you are never sure whether or not to quit.

Recall our discussion of §9.6: The Newton step for the set of equations

F(x)=0 (9.7.1)
is
Xpew = Xold + 0X 9.7.2)
where
§5x = —J '.F (9.7.3)

Here J is the Jacobian matrix. How do we decide whether to accept the Newton step
8x? A reasonable strategy is to require that the step decrease |F|?> = F - F. This is
the same requirement we would impose if we were trying to minimize

f=1iF-F (9.7.4)

(The % is for later convenience.) Every solution to (9.7.1) minimizes (9.7.4), but

there may be local minima of (9.7.4) that are not solutions to (9.7.1). Thus, as already
mentioned, simply applying one of our minimum-finding algorithms from Chapter

10 to (9.7.4) is not a good idea.
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To develop a better strategy, note that the Newton step (9.7.3) is a descent di-
rection for f

Vf-$x=F-J)- (- 1. F)=-F-F <0 9.7.5)

Thus our strategy is quite simple: We always first try the full Newton step,
because once we are close enough to the solution we will get quadratic convergence.
However, we check at each iteration that the proposed step reduces f. If not, we
backtrack along the Newton direction until we have an acceptable step. Because the
Newton step is a descent direction for f', we are guaranteed to find an acceptable step
by backtracking. We will discuss the backtracking algorithm in more detail below.

Note that this method minimizes f only “incidentally,” either by taking Newton
steps designed to bring F to zero, or by backtracking along such a step. The method
is not equivalent to minimizing f directly by taking Newton steps designed to bring
V f to zero. While the method can nevertheless still fail by converging to a local
minimum of f that is not a root (as in Figure 9.6.1), this is quite rare in real applica-
tions. The routine newt below will warn you if this happens. The only remedy is to
try a new starting point.

9.7.1 Line Searches and Backtracking

When we are not close enough to the minimum of £, taking the full Newton step p = §x
need not decrease the function; we may move too far for the quadratic approximation to be
valid. All we are guaranteed is that initially f decreases as we move in the Newton direction.
So the goal is to move to a new point Xpew along the direction of the Newton step p, but not
necessarily all the way:

Xnew = Xold + AP, 0<A<1 (9.7.6)

The aim is to find A so that f(Xc1g + Ap) has decreased sufficiently. Until the early 1970s,
standard practice was to choose A so that Xyey exactly minimizes f in the direction p. How-
ever, we now know that it is extremely wasteful of function evaluations to do so. A better
strategy is as follows: Since p is always the Newton direction in our algorithms, we first try
A = 1, the full Newton step. This will lead to quadratic convergence when x is sufficiently
close to the solution. However, if f(Xpew) does not meet our acceptance criteria, we backtrack
along the Newton direction, trying a smaller value of A, until we find a suitable point. Since
the Newton direction is a descent direction, we are guaranteed to decrease f for sufficiently
small A.

What should the criterion for accepting a step be? It is not sufficient to require merely
that f(Xpew) < f(Xo1a). This criterion can fail to converge to a minimum of f in one of
two ways. First, it is possible to construct a sequence of steps satisfying this criterion with f
decreasing too slowly relative to the step lengths. Second, one can have a sequence where the
step lengths are too small relative to the initial rate of decrease of f. (For examples of such
sequences, see [2], p. 117.)

A simple way to fix the first problem is to require the average rate of decrease of f to
be at least some fraction « of the initial rate of decrease V f - p:

S (Xnew) = f(Xo1d) + @V f - (Xnew — Xold) 9.7.7)

Here the parameter « satisfies 0 < o < 1. We can get away with quite small values of «;
o = 107" is a good choice.

The second problem can be fixed by requiring the rate of decrease of f at Xpey to be
greater than some fraction 8 of the rate of decrease of f at Xq1q. In practice, we will not need
to impose this second constraint because our backtracking algorithm will have a built-in cutoff
to avoid taking steps that are too small.

Here is the strategy for a practical backtracking routine: Define

g(A) = f(Xo1a + Ap) (9.7.8)
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so that

gA)=Vf-p (9.7.9)
If we need to backtrack, then we model g with the most current information we have and
choose A to minimize the model. We start with g(0) and g’(0) available. The first step is
always the Newton step, A = 1. If this step is not acceptable, we have available g(1) as well.
We can therefore model g(A4) as a quadratic:

g ~ [g(1) — (0) — g'(0]A% + g'(0)A + £(0) (9.7.10)
Taking the derivative of this quadratic, we find that it is a minimum when
/
0
¢ O 9.7.11)

T 20g(1) — g(0) — ' (0)]

Since the Newton step failed, one can show that A < % for small &. We need to guard against
too small a value of A, however. We set Apin = 0.1.

On second and subsequent backtracks, we model g as a cubic in A, using the previous
value g(A1) and the second most recent value g(A3):

g(A) = ar® +bA% + g/ (0)A + g(0) (9.7.12)

Requiring this expression to give the correct values of g at A1 and A, gives two equations that
can be solved for the coefficients a and b:

[a] IR B V2 S VA [gul) — &' (0 - g(O)} ©7.13)
bl A1 =22 |—a2/22 A/AZ| Le(A2) — g’ (0)A2 —g(0) .
The minimum of the cubic (9.7.12) is at
_ 2 _ /
P b3a 3ag"(0) (9.7.14)

We enforce that A lie between Apmax = 0.5A41 and Ay, = 0.117.

The routine has two additional features, a minimum step length alamin and a maximum
step length stpmax. lnsrch will also be used in the quasi-Newton minimization routine
dfpmin in the next section.

template <class T>
void lnsrch(VecDoub_I &xold, const Doub fold, VecDoub_I &g, VecDoub_IO0 &p,
VecDoub_0 &x, Doub &f, const Doub stpmax, Bool &check, T &func) {
Given an n-dimensional point x01d[0. .n-1], the value of the function and gradient there, fold
and g[0..n-1], and a direction p[0..n-1], finds a new point x[0..n-1] along the direction
p from xold where the function or functor func has decreased “sufficiently.” The new function
value is returned in f. stpmax is an input quantity that limits the length of the steps so that you
do not try to evaluate the function in regions where it is undefined or subject to overflow. p is
usually the Newton direction. The output quantity check is false on a normal exit. It is true
when x is too close to x0ld. In a minimization algorithm, this usually signals convergence and
can be ignored. However, in a zero-finding algorithm the calling program should check whether
the convergence is spurious.

const Doub ALF=1.0e-4, TOLX=numeric_limits<Doub>::epsilon();

ALF ensures sufficient decrease in function value; TOLX is the convergence criterion on AXx.

Doub a,alam,alam2=0.0,alamin,b,disc,f2=0.0;
Doub rhsi,rhs2,slope=0.0,sum=0.0,temp,test,tmplam;
Int i,n=xo0ld.size();
check=false;
for (i=0;i<n;i++) sum += p[il*p[i];
sum=sqrt (sum) ;
if (sum > stpmax)
for (i=0;i<n;i++)

roots_multidim.h



480 Chapter 9. Root Finding and Nonlinear Sets of Equations

pli]l *= stpmax/sum; Scale if attempted step is too big.

for (i=0;i<n;i++)

slope += glil*pl[il;
if (slope >= 0.0) throw("Roundoff problem in lnsrch.");
test=0.0; Compute Amin.
for (i=0;i<n;i++) {

temp=abs (p[i]) /MAX (abs (x01ld[i]),1.0);

if (temp > test) test=temp;

}
alamin=TOLX/test;
alam=1.0; Always try full Newton step first.
for (;;) { Start of iteration loop.
for (i=0;i<n;i++) x[i]=xold[i]+alam*p[i];
f=func(x);
if (alam < alamin) { Convergence on Ax. For zero find-
for (i=0;i<n;i++) x[il=xo0ld[i]; ing, the calling program should
check=true; verify the convergence.
return;
} else if (f <= fold+ALF*alam*slope) return; Sufficient function decrease.
else { Backtrack.
if (alam == 1.0)
tmplam = -slope/(2.0*(f-fold-slope)); First time.
else { Subsequent backtracks.
rhsi=f-fold-alam*slope;
rhs2=f2-fold-alam2*slope;
a=(rhs1/(alam*alam)-rhs2/(alam2*alam2))/(alam-alam?2) ;
b=(-alam2*rhs1/(alam*alam)+alam*rhs2/(alam2*alam?))/(alam-alam?2) ;
if (a == 0.0) tmplam = -slope/(2.0%b);
else {
disc=b*b-3.0*a*slope;
if (disc < 0.0) tmplam=0.5%alam;
else if (b <= 0.0) tmplam=(-b+sqrt(disc))/(3.0%a);
else tmplam=-slope/(b+sqrt(disc));
}
if (tmplam>0.5%alam)
tmplam=0.5*alam; A <0.5A;.
}
}
alam2=alam;
£2 = f;
alam=MAX (tmplam,0.1*alam) ; A>0.1A1.
} Try again.

9.7.2 Globally Convergent Newton Method

Using the above results on backtracking, here is the globally convergent New-
ton routine newt that uses 1nsrch. A feature of newt is that you need not supply the
Jacobian matrix analytically; the routine will attempt to compute the necessary par-
tial derivatives of F by finite differences in the routine NRfdjac. This routine uses
some of the techniques described in §5.7 for computing numerical derivatives. Of
course, you can always replace NRfdjac with a routine that calculates the Jacobian
analytically if this is easy for you to do.

The routine requires a user-supplied function or functor that computes the vec-
tor of functions to be zeroed. Its declaration as a function is

VecDoub vecfunc(VecDoub_I x);

(The name vecfunc is arbitrary.) The declaration as a functor is similar.
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template <class T>
void newt(VecDoub_IO0 &x, Bool &check, T &vecfunc) {
Given an initial guess x[0. .n-1] for a root in n dimensions, find the root by a globally convergent
Newton's method. The vector of functions to be zeroed, called fvec[0..n-1] in the routine
below, is returned by the user-supplied function or functor vecfunc (see text). The output
quantity check is false on a normal return and true if the routine has converged to a local
minimum of the function fmin defined below. In this case try restarting from a different initial
guess.

const Int MAXITS=200;

const Doub TOLF=1.0e-8,TOLMIN=1.0e-12,STPMX=100.0;

const Doub TOLX=numeric_limits<Doub>::epsilon();

Here MAXITS is the maximum number of iterations; TOLF sets the convergence criterion on

function values; TOLMIN sets the criterion for deciding whether spurious convergence to a

minimum of fmin has occurred; STPMX is the scaled maximum step length allowed in line

searches; and TOLX is the convergence criterion on §X.

Int i,j,its,n=x.size();

Doub den,f,fold,stpmax,sum,temp,test;

VecDoub g(n),p(n),xo0ld(n);

MatDoub fjac(n,n);

NRfmin<T> fmin(vecfunc); Set up NRfmin object.

NRfdjac<T> fdjac(vecfunc); Set up NRfdjac object.

VecDoub &fvec=fmin.fvec; Make an alias to simplify coding.
f=fmin(x); fvec is also computed by this call.
test=0.0; Test for initial guess being a root. Use
for (i=0;i<n;i++) more stringent test than simply TOLF.

if (abs(fvec[i]) > test) test=abs(fvec[i]);
if (test < 0.01*TOLF) {
check=false;

return;
}
sum=0.0;
for (i=0;i<n;i++) sum += SQR(x[i]); Calculate stpmax for line searches.
stpmax=STPMX*MAX (sqrt (sum) ,Doub(n)) ;
for (its=0;its<MAXITS;its++) { Start of iteration loop.

fjac=fdjac(x,fvec);
If analytic Jacobian is available, you can replace the struct NRfdjac below with your

own struct.
for (i=0;i<n;i++) { Compute V f for the line search.
sum=0.0;
for (j=0;j<n;j++) sum += fjacl[jl[il*fvec[j];
gli]l=sum;
}
for (i=0;i<n;i++) xold[il=x[il; Store X,
fold=f; and f.
for (i=0;i<n;i++) pli] = -fvec[i]; Right-hand side for linear equations.
LUdcmp alu(fjac); Solve linear equations by LU decompo-
alu.solve(p,p); sition.

lnsrch(xold,fold,g,p,x,f,stpmax,check,fmin) ;
1nsrch returns new X and f. It also calculates fvec at the new X when it calls fmin.

test=0.0; Test for convergence on function values.
for (i=0;i<n;i++)

if (abs(fvec[i]) > test) test=abs(fvec[i]);
if (test < TOLF) {

check=false;

return;

}

if (check) { Check for gradient of f zero, i.e., spu-
test=0.0; rious convergence.

den=MAX (f,0.5%n) ;

for (i=0;i<n;i++) {
temp=abs (g[i])*MAX (abs(x[i]),1.0)/den;
if (temp > test) test=temp;

roots_multidim.h
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check=(test < TOLMIN);
return;
}
test=0.0; Test for convergence on 6X.
for (i=0;i<n;i++) {
temp=(abs (x[i]-x01d[i]))/MAX (abs(x[i]),1.0);
if (temp > test) test=temp;
}
if (test < TOLX)
return;
}
throw ("MAXITS exceeded in newt");

template <class T>
struct NRfdjac {
Computes forward-difference approximation to Jacobian.

};

const Doub EPS; Set to approximate square root of the machine pre-
T &func; cision.
NRfdjac(T &funcc) : EPS(1.0e-8),func(funcc) {3}
Initialize with user-supplied function or functor that returns the vector of functions to be
zeroed.
MatDoub operator() (VecDoub_I &x, VecDoub_I &fvec) {
Returns the Jacobian array df[0..n-1]1[0..n-1]. On input, x[0..n-1] is the point at
which the Jacobian is to be evaluated and fvec[0..n-1] is the vector of function values
at the point.
Int n=x.size();
MatDoub df (n,n);
VecDoub xh=x;
for (Int j=0;j<n;j++) {
Doub temp=xh[j];
Doub h=EPS*abs (temp) ;
if (h == 0.0) h=EPS;
xh[j]l=temp+h; Trick to reduce finite-precision error.
h=xh[j]-temp;
VecDoub f=func(xh);
xh[j]l=temp;
for (Int i=0;i<n;i++) Forward difference formula.
df [i] [j1=(£f[i]-fvec[i])/h;
}

return df;

template <class T>
struct NRfmin {
Returns f = %F -F. Also stores value of F in fvec.

VecDoub fvec;
T &func;
Int n;
NRfmin(T &funcc) : func(funcc){}
Initialize with user-supplied function or functor that returns the vector of functions to be
zeroed.
Doub operator() (VecDoub_I &x) {
Returns f at x, and stores F(X) in fvec.
n=x.size();
Doub sum=0;
fvec=func(x);
for (Int i=0;i<n;i++) sum += SQR(fvec[i]);
return 0.5%sum;
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The routine newt assumes that the typical values of all components of x and
of F are of order unity, and it can fail if this assumption is badly violated. You
should rescale the variables by their typical values before invoking newt if this
problem occurs.

9.7.3 Multidimensional Secant Methods: Broyden’s
Method

Newton’s method as implemented above is quite powerful, but it still has several disad-
vantages. One drawback is that the Jacobian matrix is needed. In many problems analytic
derivatives are unavailable. If function evaluation is expensive, then the cost of finite differ-
ence determination of the Jacobian can be prohibitive.

Just as the quasi-Newton methods to be discussed in §10.9 provide cheap approxima-
tions for the Hessian matrix in minimization algorithms, there are quasi-Newton methods that
provide cheap approximations to the Jacobian for zero finding. These methods are often called
secant methods, since they reduce to the secant method (§9.2) in one dimension (see, e.g., [2]).
The best of these methods still seems to be the first one introduced, Broyden’s method [3].

Let us denote the approximate Jacobian by B. Then the i th quasi-Newton step §x; is the
solution of

B; - §x; = —F; (9.7.15)

where §x; = X;41 — X; (cf. equation 9.7.3). The quasi-Newton or secant condition is that
B, 41 satisfy
B;y1-8x; =6F; (9.7.16)

where §F; = F; 1 —F;. This is the generalization of the one-dimensional secant approxima-
tion to the derivative, 6 F/§x. However, equation (9.7.16) does not determine B; 41 uniquely
in more than one dimension.

Many different auxiliary conditions to pin down B; ;1 have been explored, but the best-
performing algorithm in practice results from Broyden’s formula. This formula is based on
the idea of getting B; 1 by making the least change to B; consistent with the secant equation
(9.7.16). Broyden showed that the resulting formula is

(8Fi _Bi -5X[) ® SXL'
B;+1 =B; 9.7.17
i+1 i+ 8x; - 0%, ( )

You can easily check that B; 1 satisfies (9.7.16).
Early implementations of Broyden’s method used the Sherman-Morrison formula, equa-
tion (2.7.2), to invert equation (9.7.17) analytically,

(8x; —B;'-6F;) ® 8x; - B!
5x; - Bl-_l . 5Fi

Bl =B; '+ (9.7.18)

Then, instead of solving equation (9.7.3) by, e.g., LU decomposition, one determined
§x; = —B;!.F; (9.7.19)

by matrix multiplication in O(N?) operations. The disadvantage of this method is that it
cannot easily be embedded in a globally convergent strategy, for which the gradient of equation
(9.7.4) requires B, not B~ L,

V(AF-F)~BT.F (9.7.20)

Accordingly, we implement the update formula in the form (9.7.17).

However, we can still preserve the O(N?2) solution of (9.7.3) by using QR decomposi-
tion (§2.10) instead of LU decomposition. The reason is that because of the special form of
equation (9.7.17), the QR decomposition of B; can be updated into the Q R decomposition of
B, 1 in O(N?) operations (§2.10). All we need is an initial approximation By to start the ball
rolling. It is often acceptable to start simply with the identity matrix, and then allow O(N)
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updates to produce a reasonable approximation to the Jacobian. We prefer to spend the first N
function evaluations on a finite difference approximation to initialize B via a call to NRfd jac.
Since B is not the exact Jacobian, we are not guaranteed that §x is a descent direction

for f = %F -F (cf. equation 9.7.5). Thus the line search algorithm can fail to return a suitable
step if B wanders far from the true Jacobian. In this case, we reinitialize B by another call to
NRfdjac.

Like the secant method in one dimension, Broyden’s method converges superlinearly
once you get close enough to the root. Embedded in a global strategy, it is almost as robust as
Newton’s method, and often needs far fewer function evaluations to determine a zero. Note
that the final value of B is not always close to the true Jacobian at the root, even when the
method converges.

The routine broydn, given below, is very similar to newt in organization. The princi-
pal differences are the use of QR decomposition instead of LU, and the updating formula
instead of directly determining the Jacobian. The remarks at the end of newt about scaling the
variables apply equally to broydn.

template <class T>
void broydn(VecDoub_IO0 &x, Bool &check, T &vecfunc) {
Given an initial guess x[0..n-1] for a root in n dimensions, find the root by Broyden's
method embedded in a globally convergent strategy. The vector of functions to be zeroed,
called fvec[0..n-1] in the routine below, is returned by the user-supplied function or functor
vecfunc. The routines NRfdjac and NRfmin from newt are used. The output quantity check
is false on a normal return and true if the routine has converged to a local minimum of the
function fmin or if Broyden's method can make no further progress. In this case try restarting
from a different initial guess.

const Int MAXITS=200;

const Doub EPS=numeric_limits<Doub>::epsilon();

const Doub TOLF=1.0e-8, TOLX=EPS, STPMX=100.0, TOLMIN=1.0e-12;

Here MAXITS is the maximum number of iterations; EPS is the machine precision; TOLF

is the convergence criterion on function values; TOLX is the convergence criterion on §X;

STPMX is the scaled maximum step length allowed in line searches; and TOLMIN is used to

decide whether spurious convergence to a minimum of fmin has occurred.

Bool restrt,skip;

Int i,its,j,n=x.size();

Doub den,f,fold,stpmax,sum,temp,test;

VecDoub fvcold(n),g(n),p(n),s(n),t(n),w(n),xold(n);

QRdcmp *qr;
NRfmin<T> fmin(vecfunc); Set up NRfmin object.
NRfdjac<T> fdjac(vecfunc); Set up NRfdjac object.
VecDoub &fvec=fmin.fvec; Make an alias to simplify coding.
f=fmin(x) ; The vector fvec is also computed by this
test=0.0; call.
for (i=0;i<n;i++) Test for initial guess being a root. Use more
if (abs(fvec[i]) > test) test=abs(fvecl[i]); stringent test than sim-
if (test < 0.01*TOLF) { ply TOLF.
check=false;
return;
}
for (sum=0.0,i=0;i<n;i++) sum += SQR(x[i]); Calculate stpmax for line searches.
stpmax=STPMX*MAX (sqrt (sum) ,Doub(n)) ;
restrt=true; Ensure initial Jacobian gets computed.
for (its=1;its<=MAXITS;its++) { Start of iteration loop.
if (restrt) { Initialize or reinitialize Jacobian and QR de-
qr=new QRdcmp(fdjac(x,fvec)); compose it.
if (qr->sing) throw("singular Jacobian in broydn");
} else { Carry out Broyden update.
for (i=0;i<n;i++) s[il=x[i]-x0ld[i]; s = 6X.
for (i=0;i<n;i++) { t=R-s.
for (sum=0.0,j=i;j<n;j++) sum += qr->r[i]l[jl1*s[j];
t[i]=sum;
}

skip=true;
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for (i=0;i<n;i++) { w =6F —B -s.
for (sum=0.0,j=0;j<n;j++) sum += qr->qt[j][i]*t[j];
wlil=fvec[i]-fvcold[i]-sum;
if (abs(w[i]) >= EPS*(abs(fvec[i])+abs(fvcold[i]))) skip=false;
Don't update with noisy components of w.
else w[i]=0.0;

}
if (!skip) {
qr->qtmult (w,t) ; t= QT “W.
for (den=0.0,i=0;i<n;i++) den += SQR(s[i]);
for (i=0;i<n;i++) s[i] /= den; Store s/(s-S) in s.
qr->update(t,s); Update R and QT.
if (qr->sing) throw("singular update in broydn");
}
}
qr->qtmult (fvec,p) ;
for (i=0;i<n;i++) Right-hand side for linear equations is —QT -F.
plil = -plil;
for (i=n-1;i>=0;i--) { Compute V f ~ (Q-R)7 -F for the line search.
for (sum=0.0,j=0;j<=i;j++) sum -= qr->r[j][i]l*p[j];
glil=sum;
}
for (i=0;i<n;i++) { Store X and F.
xold[i]l=x[i];
fvcold[il=fvec[i];
}
fold=f; Store f.
qr->rsolve(p,p); Solve linear equations.

lnsrch(xold,fold,g,p,x,f,stpmax,check,fmin) ;
1nsrch returns new X and f. It also calculates fvec at the new X when it calls fmin.

test=0.0; Test for convergence on function values.
for (i=0;i<n;i++)

if (abs(fvec[i]) > test) test=abs(fvec[i]);
if (test < TOLF) {

check=false;

delete qr;
return;
}
if (check) { True if line search failed to find a new Xx.
if (restrt) { Failure; already tried reinitializing the Jacobian.
delete qr;
return;
} else {
test=0.0; Check for gradient of f zero, i.e., spurious con-
den=MAX (f,0.5%n) ; vergence.
for (i=0;i<n;i++) {
temp=abs (g[i])*MAX (abs(x[i]),1.0)/den;
if (temp > test) test=temp;
}
if (test < TOLMIN) {
delete qr;
return;
}
else restrt=true; Try reinitializing the Jacobian.
}
} else { Successful step; will use Broyden update for next
restrt=false; step.
test=0.0; Test for convergence on §X.

for (i=0;i<n;i++) {
temp=(abs(x[i]-x01d[i]))/MAX (abs(x[i]),1.0);
if (temp > test) test=temp;
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if (test < TOLX) {
delete qr;
return;

}
}
throw ("MAXITS exceeded in broydn");

9.7.4 More Advanced Implementations

One of the principal ways that the methods described so far can fail is if J (in Newton’s
method) or B in (Broyden’s method) becomes singular or nearly singular, so that §x cannot
be determined. If you are lucky, this situation will not occur very often in practice. Methods
developed so far to deal with this problem involve monitoring the condition number of J and
perturbing J if singularity or near singularity is detected. This is most easily implemented if
the OR decomposition is used instead of LU in Newton’s method (see [2] for details). Our
personal experience is that, while such an algorithm can solve problems where J is exactly
singular and the standard Newton method fails, it is occasionally less robust on other prob-
lems where LU decomposition succeeds. Clearly implementation details involving roundoff,
underflow, etc., are important here and the last word is yet to be written.

Our global strategies both for minimization and zero finding have been based on line
searches. Other global algorithms, such as the hook step and dogleg step methods, are based
instead on the model-trust region approach, which is related to the Levenberg-Marquardt al-
gorithm for nonlinear least squares (§15.5). While somewhat more complicated than line
searches, these methods have a reputation for robustness even when starting far from the de-
sired zero or minimum [2].
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