Random Numbers

7.0 Introduction

It may seem perverse to use a computer, that most precise and deterministic of
all machines conceived by the human mind, to produce “random” numbers. More
than perverse, it may seem to be a conceptual impossibility. After all, any program
produces output that is entirely predictable, hence not truly “random.”

Nevertheless, practical computer “random number generators” are in common
use. We will leave it to philosophers of the computer age to resolve the paradox in
a deep way (see, e.g., Knuth [1] §3.5 for discussion and references). One sometimes
hears computer-generated sequences termed pseudo-random, while the word random
is reserved for the output of an intrinsically random physical process, like the elapsed
time between clicks of a Geiger counter placed next to a sample of some radioactive
element. We will not try to make such fine distinctions.

A working definition of randomness in the context of computer-generated se-
quences is to say that the deterministic program that produces a random sequence
should be different from, and — in all measurable respects — statistically uncor-
related with, the computer program that uses its output. In other words, any two
different random number generators ought to produce statistically the same results
when coupled to your particular applications program. If they don’t, then at least one
of them is not (from your point of view) a good generator.

The above definition may seem circular, comparing, as it does, one generator to
another. However, there exists a large body of random number generators that mutu-
ally do satisfy the definition over a very, very broad class of applications programs.
And it is also found empirically that statistically identical results are obtained from
random numbers produced by physical processes. So, because such generators are
known to exist, we can leave to the philosophers the problem of defining them.

The pragmatic point of view is thus that randomness is in the eye of the beholder
(or programmer). What is random enough for one application may not be random
enough for another. Still, one is not entirely adrift in a sea of incommensurable
applications programs: There is an accepted list of statistical tests, some sensible and
some merely enshrined by history, that on the whole do a very good job of ferreting
out any nonrandomness that is likely to be detected by an applications program (in
this case, yours). Good random number generators ought to pass all of these tests,
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or at least the user had better be aware of any that they fail, so that he or she will be
able to judge whether they are relevant to the case at hand.

For references on this subject, the one to turn to first is Knuth [1]. Be cautious
about any source earlier than about 1995, since the field progressed enormously in
the following decade.

CITED REFERENCES AND FURTHER READING:
Knuth, D.E. 1997, Seminumerical Algorithms, 3rd ed., vol. 2 of The Art of Computer Program-
ming (Reading, MA: Addison-Wesley), Chapter 3, especially §3.5.[1]

Gentle, J.E. 2003, Random Number Generation and Monte Carlo Methods, 2nd ed. (New York:
Springer).

7.1 Uniform Deviates

Uniform deviates are just random numbers that lie within a specified range, typ-
ically 0.0 to 1.0 for floating-point numbers, or 0 to 232 — 1 or 264 — 1 for integers.
Within the range, any one number is just as likely as any other. They are, in other
words, what you probably think “random numbers” are. However, we want to distin-
guish uniform deviates from other sorts of random numbers, for example, numbers
drawn from a normal (Gaussian) distribution of specified mean and standard de-
viation. These other sorts of deviates are almost always generated by performing
appropriate operations on one or more uniform deviates, as we will see in subse-
quent sections. So, a reliable source of random uniform deviates, the subject of this
section, is an essential building block for any sort of stochastic modeling or Monte
Carlo computer work.

The state of the art for generating uniform deviates has advanced considerably
in the last decade and now begins to resemble a mature field. It is now reasonable to
expect to get “perfect” deviates in no more than a dozen or so arithmetic or logical
operations per deviate, and fast, “good enough” deviates in many fewer operations
than that. Three factors have all contributed to the field’s advance: first, new mathe-
matical algorithms; second, better understanding of the practical pitfalls; and, third,
standardization of programming languages in general, and of integer arithmetic in
particular — and especially the universal availability of unsigned 64-bit arithmetic
in C and C++. It may seem ironic that something as down-in-the-weeds as this last
factor can be so important. But, as we will see, it really is.

The greatest lurking danger for a user today is that many out-of-date and inferior
methods remain in general use. Here are some traps to watch for:

e Never use a generator principally based on a linear congruential generator
(LCG) or a multiplicative linear congruential generator (MLCG). We say
more about this below.

e Never use a generator with a period less than ~ 2% ~ 2 x 10'°, or any
generator whose period is undisclosed.

e Never use a generator that warns against using its low-order bits as being com-
pletely random. That was good advice once, but it now indicates an obsolete
algorithm (usually a LCG).
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e Never use the built-in generators in the C and C++ languages, especially rand
and srand. These have no standard implementation and are often badly flawed.

If all scientific papers whose results are in doubt because of one or more of the above
traps were to disappear from library shelves, there would be a gap on each shelf
about as big as your fist.

You may also want to watch for indications that a generator is overengineered,
and therefore wasteful of resources:

e Avoid generators that take more than (say) two dozen arithmetic or logical
operations to generate a 64-bit integer or double precision floating result.

e Avoid using generators (over-)designed for serious cryptographic use.

e Avoid using generators with period > 10!°°. You really will never need it,
and, above some minimum bound, the period of a generator has little to do
with its quality.

Since we have told you what to avoid from the past, we should immediately
follow with the received wisdom of the present:

An acceptable random generator must combine at least two
(ideally, unrelated) methods. The methods combined should
evolve independently and share no state. The combination
should be by simple operations that do not produce results
less random than their operands.

If you don’t want to read the rest of this section, then use the following code to
generate all the uniform deviates you’ll ever need. This is our suspenders-and-belt,
full-body-armor, never-any-doubt generator;* and, it also meets the above guidelines
for avoiding wasteful, overengineered methods. (The fastest generators that we rec-
ommend, below, are only ~2.5 x faster, even when their code is copied inline into
an application.)

struct Ran {
Implementation of the highest quality recommended generator. The constructor is called with
an integer seed and creates an instance of the generator. The member functions int64, doub,
and int32 return the next values in the random sequence, as a variable type indicated by their
names. The period of the generator is ~ 3.138 x 10°7.
Ullong u,v,w;
Ran(Ullong j) : v(4101842887655102017LL), w(1) {
Constructor. Call with any integer seed (except value of v above).
u=3j " v; int64();
v = u; int64();
w v; int64();

}
inline Ullong int64() {

*“What about the $1000 reward?” some long-time readers may wonder. That is a tale in itself: Two
decades ago, the first edition of Numerical Recipes included a flawed random number generator. (Forgive
us, we were young!) In the second edition, in a misguided attempt to buy back some credibility, we
offered a prize of $1000 to the “first reader who convinces us” that that edition’s best generator was in any
way flawed. No one ever won that prize (ran?2 is a sound generator within its stated limits). We did learn,
however, that many people don’t understand what constitutes a statistical proof. Multiple claimants over
the years have submitted claims based on one of two fallacies: (1) finding, after much searching, some
particular seed that makes the first few random values seem unusual, or (2) finding, after some millions of
trials, a statistic that, just that once, is as unlikely as a part in a million. In the interests of our own sanity,
we are not offering any rewards in this edition. And the previous offer is hereby revoked.
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Return 64-bit random integer. See text for explanation of method.
u = u * 2862933555777941757LL + 7046029254386353087LL;

v "=v >> 17; v "= v << 31; v "= v >> 8;
w = 4294957665U* (w & Oxffffffff) + (w >> 32);
Ullong x = u ~ (u << 21); x "= x > 35; x "= x << 4;

return (x + v) ~ w;
}
inline Doub doub() { return 5.42101086242752217E-20 * int64(); }
Return random double-precision floating value in the range 0. to 1.
inline Uint int32() { return (Uint)int64(); }
Return 32-bit random integer.

The basic premise here is that a random generator, because it maintains internal
state between calls, should be an object, a struct. You can declare more than one
instance of it (although it is hard to think of a reason for doing so), and different
instances will in no way interact.

The constructor Ran () takes a single integer argument, which becomes the seed
for the sequence generated. Different seeds generate (for all practical purposes)
completely different sequences. Once constructed, an instance of Ran offers sev-
eral different formats for random output. To be specific, suppose you have created
an instance by the declaration

Ran myran(17);

where myran is now the name of this instance, and 17 is its seed. Then, the function
myran.int64() returns a random 64-bit unsigned integer; the function
myran.int32() returns an unsigned 32-bit integer; and the functionmyran.doub ()
returns a double-precision floating value in the range 0.0 to 1.0. You can intermix
calls to these functions as you wish. You can use any returned random bits for any
purpose. If you need a random integer between 1 and n (inclusive), say, then the
expression 1 + myran.int64() % (n-1) is perfectly OK (though there are faster
idioms than the use of %).

In the rest of this section, we briefly review some history (the rise and fall of
the LCG), then give details on some of the algorithmic methods that go into a good
generator, and on how to combine those methods. Finally, we will give some further
recommended generators, additional to Ran above.

7.1.1 Some History

With hindsight, it seems clear that the whole field of random number generation
was mesmerized, for far too long, by the simple recurrence equation

Ijy1=al; +c (mod m) (7.1.1)

Here m is called the modulus, a is a positive integer called the multiplier, and ¢
(which may be zero) is nonnegative integer called the increment. For ¢ # 0, equation
(7.1.1) is called a linear congruential generator (LCG). When ¢ = 0, it is sometimes
called a multiplicative LCG or MLCG.

The recurrence (7.1.1) must eventually repeat itself, with a period that is obvi-
ously no greater than m. If m, a, and c are properly chosen, then the period will be
of maximal length, i.e., of length m. In that case, all possible integers between 0 and
m — 1 occur at some point, so any initial “seed” choice of I is as good as any other:
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The sequence just takes off from that point, and successive values /; are the returned
“random” values.

The idea of LCGs goes back to the dawn of computing, and they were widely
used in the 1950s and thereafter. The trouble in paradise first began to be noticed in
the mid-1960s (e.g., [1]): If k£ random numbers at a time are used to plot points in
k-dimensional space (with each coordinate between 0 and 1), then the points will not
tend to “fill up” the k-dimensional space, but rather will lie on (k — 1)-dimensional
“planes.” There will be ar most about m'/* such planes. If the constants m and a
are not very carefully chosen, there will be many fewer than that. The number m
was usually close to the machine’s largest representable integer, often ~ 232. So,
for example, the number of planes on which triples of points lie in three-dimensional
space can be no greater than about the cube root of 232, about 1600. You might well
be focusing attention on a physical process that occurs in a small fraction of the total
volume, so that the discreteness of the planes can be very pronounced.

Even worse, many early generators happened to make particularly bad choices
for m and . One infamous such routine, RANDU, with ¢ = 65539 and m = 23!,
was widespread on IBM mainframe computers for many years, and widely copied
onto other systems. One of us recalls as a graduate student producing a “random”
plot with only 11 planes and being told by his computer center’s programming con-
sultant that he had misused the random number generator: “We guarantee that each
number is random individually, but we don’t guarantee that more than one of them
is random.” That set back our graduate education by at least a year!

LCGs and MLCGs have additional weaknesses: When m is chosen as a power
of 2 (e.g., RANDU), then the low-order bits generated are hardly random at all. In
particular, the least significant bit has a period of at most 2, the second at most 4,
the third at most 8, and so on. But, if you don’t choose m as a power of 2 (in
fact, choosing m prime is generally a good thing), then you generally need access
to double-length registers to do the multiplication and modulo functions in equation
(7.1.1). These were often unavailable in computers of the time (and usually still are).

A lot of effort subsequently went into “fixing” these weaknesses. An elegant
number-theoretical test of m and a, the spectral test, was developed to characterize
the density of planes in arbitrary dimensional space. (See [2] for a recent review that
includes graphical renderings of some of the appallingly poor generators that were
used historically, and also [3].) Schrage’s method [4] was invented to do the multipli-
cation a /; with only 32-bit arithmetic for m as large as 232 _ 1, but, unfortunately,
only for certain a’s, not always the best ones. The review by Park and Miller [5] gives
a good contemporary picture of LCGs in their heyday.

Looking back, it seems clear that the field’s long preoccupation with LCGs was
somewhat misguided. There is no technological reason that the better, non-LCG,
generators of the last decade could not have been discovered decades earlier, nor any
reason that the impossible dream of an elegant “single algorithm” generator could not
also have been abandoned much earlier (in favor of the more pragmatic patchwork
in combined generators). As we will explain below, LCGs and MLCGs can still
be useful, but only in carefully controlled situations, and with due attention to their
manifest weaknesses.
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7.1.2 Recommended Methods for Use in Combined
Generators

Today, there are at least a dozen plausible algorithms that deserve serious con-
sideration for use in random generators. Our selection of a few is motivated by
aesthetics as much as mathematics. We like algorithms with few and fast operations,
with foolproof initialization, and with state small enough to keep in registers or first-
level cache (if the compiler and hardware are able to do so). This means that we tend
to avoid otherwise fine algorithms whose state is an array of some length, despite the
relative simplicity with which such algorithms can achieve truly humongous periods.
For overviews of broader sets of methods, see [6] and [7].

To be recommendable for use in a combined generator, we require a method
to be understood theoretically to some degree, and to pass a reasonably broad suite
of empirical tests (or, if it fails, have weaknesses that are well characterized). Our
minimal theoretical standard is that the period, the set of returned values, and the
set of valid initializations should be completely understood. As a minimal empirical
standard, we have used the second release (2003) of Marsaglia’s whimsically named
Dichard battery of statistical tests [8].* An alternative test suite, NIST-STS [9], might
be used instead, or in addition.

Simply requiring a combined generator to pass Diehard or NIST-STS is not
an acceptably stringent test. These suites make only ~107 calls to the generator,
whereas a user program might make 10'2 or more. Much more meaningful is to
require that each method in a combined generator separately pass the chosen suite.
Then the combination generator (if correctly constructed) should be vastly better
than any one component. In the tables below, we use the symbol “3” to indicate that
a method passes the Diehard tests by itself. (For 64-bit quantities, the statement is
that the 32 high and low bits each pass.) Correspondingly, the words “can be used
as random,” below, do not imply perfect randomness, but only a minimum level for
quick-and-dirty applications where a better, combined, generator is just not needed.

We turn now to specific methods, starting with methods that use 64-bit unsigned
arithmetic (what we call Ullong, that is, unsigned long long in the Linux/Unix
world, or unsigned __int64 on planet Microsoft).

(A) 64-bit Xorshift Method. This generator was discovered and characterized
by Marsaglia[10]. In just three XORs and three shifts (generally fast operations)
it produces a full period of 264 — 1 on 64 bits. (The missing value is zero, which
perpetuates itself and must be avoided.) High and low bits pass Diehard. A generator
can use either the three-line update rule, below, that starts with <<, or the rule that
starts with >>. (The two update rules produce different sequences, related by bit
reversal.)

state: X (unsigned 64-bit)
initialize: x # 0
update: X< x AKX > ay),

X < xA(x << ap),
X < xA(x > az);
or X < xA(x << ay),
X <—xA((x > ap),

*Be sure that you use a version of Diehard that includes the so-called “Gorilla Test.”
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X < xA(x << az);

can use as random:  x (all bits)

can use in bit mix:  x (all bits)

can improve by: output 64-bit MLCG successor
period: 264 1

Here is a very brief outline of the theory behind these generators: Consider the
64 bits of the integer as components in a vector of length 64, in a linear space where
addition and multiplication are done modulo 2. Noting that XOR (A) is the same as
addition, each of the three lines in the updating can be written as the action of a 64 x
64 matrix on a vector, where the matrix is all zeros except for ones on the diagonal,
and on exactly one super- or subdiagonal (corresponding to << or >>). Denote this
matrix as Sg, where k is the shift argument (positive for left-shift, say, and negative
for right-shift). Then, one full step of updating (three lines of the updating rule,
above) corresponds to multiplication by the matrix T = Sy, Sy, Sk, .

One next needs to find triples of integers (k1, k2, k3), for example (21, —35, 4),
that give the full M = 2%% — 1 period. Necessary and sufficient conditions are
that TM = 1 (the identity matrix) and that ™ # 1 for these seven values of N:
M/6700417, M /65537, M/641, M/257, M/17, M/5, and M/3, that is, M di-
vided by each of its seven distinct prime factors. The required large powers of T are
readily computed by successive squarings, requiring only on the order of 64* opera-
tions. With this machinery, one can find full-period triples (k1, k2, k3) by exhaustive
search, at a reasonable cost.

Brent [11] has pointed out that the 64-bit xorshift method produces, at each bit
position, a sequence of bits that is identical to one produced by a certain linear feed-
back shift register (LFSR) on 64 bits. (We will learn more about LFSRs in §7.5.)
The xorshift method thus potentially has some of the same strengths and weaknesses
as an LFSR. Mitigating this, however, is the fact that the primitive polynomial equiv-
alent of a typical xorshift generator has many nonzero terms, giving it better statis-
tical properties than LFSR generators based, for example, on primitive trinomials.
In effect, the xorshift generator is a way to step simultaneously 64 nontrivial one-
bit LFSR registers, using only six fast, 64-bit operations. There are other ways
of making fast steps on LFSRs, and combining the output of more than one such
generator [12,13], but none as simple as the xorshift method.

While each bit position in an xorshift generator has the same recurrence, and
therefore the same sequence with period 264 — 1, the method guarantees offsets to
each sequence such that all nonzero 64-bit words are produced across the bit posi-
tions during one complete cycle (as we just saw).

A selection of full-period triples is tabulated in [10]. Only a small fraction of
full-period triples actually produce generators that pass Diehard. Also, a triple may
pass in its <<-first version, and fail in its >>-first version, or vice versa. Since the
two versions produce simply bit-reversed sequences, a failure of either sense must
obviously be considered a failure of both (and a weakness in Diehard). The following
recommended parameter sets pass Diehard for both the << and >> rules. The sets near
the top of the list may be slightly superior to the sets near the bottom. The column
labeled ID assigns an identification string to each recommended generator that we
will refer to later.
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1D aq an as
Al | 21 | 35| 4
A2 |20 | 41| 5
A3 |17 | 31| 8
A4 | 11 | 29 | 14
A5 | 14129 | 11
A6 | 30 | 35| 13
A7 |21 | 37| 4
A8 | 21 |43 | 4
A9 | 23 | 41 | 18

It is easy to design a test that the xorshift generator fails if used by itself. Each
bit at step i + 1 depends on at most 8 bits of step i, so some simple logical com-
binations of the two timesteps (and appropriate masks) will show immediate non-
randomness. Also, when the state passes though a value with only small numbers
of 1 bits, as it must eventually do (so-called states of low Hamming weight), it will
take longer than expected to recover. Nevertheless, used in combination, the xorshift
generator is an exceptionally powerful and useful method. Much grief could have
been avoided had it, instead of LCGs, been discovered in 1949!

(B) Multiply with Carry (MWC) with Base b = 232, Also discovered by
Marsaglia, the base b of an MWC generator is most conveniently chosen to be a
power of 2 that is half the available word length (i.e., b = 32 for 64-bit words). The
MWC is then defined by its multiplier a.

state: x (unsigned 64-bit)
initialize: l<x<2¥%2—-1
update: x<a(x & [222-1]) + (x > 32)

can use as random: x (low 32 bits)

can use in bit mix:  x (all 64 bits)

can improve by: output 64-bit xorshift successor to 64 bit x
period: (2%2a —2)/2 (a prime)

An MWC generator with parameters b and a is related theoretically [14] to,
though not identical to, an LCG with modulus m = ab—1 and multiplier a. It is easy
to find values of a that make m a prime, so we get, in effect, the benefit of a prime
modulus using only power-of-two modular arithmetic. It is not possible to choose
a to give the maximal period m, but if a is chosen to make both m and (m — 1)/2
prime, then the period of the MCG is (m — 1)/2, almost as good. A fraction of
candidate a’s thus chosen passes the standard statistical test suites; a spectral test [14]
is a promising development, but we have not made use of it here.

Although only the low b bits of the state x can be taken as algorithmically ran-
dom, there is considerable randomness in all the bits of x that represent the product
ab. This is very convenient in a combined generator, allowing the entire state x to
be used as a component. In fact, the first two recommended a’s below give ab so
close to 2% (within about 2 ppm) that the high bits of x actually pass Diehard. (This
is a good example of how any test suite can fail to find small amounts of highly
nonrandom behavior, in this case as many as 8000 missing values in the top 32 bits.)
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Apart from this kind of consideration, the values below are recommended with no

particular ordering.

1D a

B1 | 4294957665
B2 | 4294963023
B3 | 4162943475
B4 | 3947008974
B5 | 3874257210
B6 | 2936881968
B7 | 2811536238
B8 | 2654432763
B9 | 1640531364

(C) LCG Modulo 2%4. Why in the world do we include this generator after
vilifying it so thoroughly above? For the parameters given (which strongly pass the
spectral test), its high 32 bits almost, but don’t quite, pass Diehard, and its low 32
bits are a complete disaster. Yet, as we will see when we discuss the construction of
combined generators, there is still a niche for it to fill. The recommended multipliers
a below have good spectral characteristics [15].

state:
initialize:
update:

can use as random:
can use in bit mix:
can improve by:

period:

X (unsigned 64-bit)

any value

X < ax + ¢ (mod 2%%)

x (high 32 bits, with caution)
x (high 32 bits)

output 64-bit xorshift successor
264

ID

a

¢ (any odd value ok)

C1 | 3935559000370003845 | 2691343689449507681
C2 | 3202034522624059733 | 4354685564936845319
C3 | 2862933555777941757 | 7046029254386353087

(D) MLCG Modulo 2%4. As for the preceding one, the useful role for this
generator is strictly limited. The low bits are highly nonrandom. The recommended
multipliers have good spectral characteristics (some from [15]).

state:
initialize:
update:

can use as random:
can use in bit mix:
can improve by:

period:

X (unsigned 64-bit)

x#0

X < ax (mod 2%%)

x (high 32 bits, with caution)
x (high 32 bits)

output 64-bit xorshift successor
262
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ID a

D1 | 2685821657736338717
D2 | 7664345821815920749
D3 | 4768777513237032717
D4 | 1181783497276652981
D5 702098784532940405

(E) MLCG with m > 232, m Prime. When 64-bit unsigned arithmetic is
available, the MLCGs with prime moduli and large multipliers of good spectral char-
acter are decent 32-bit generators. Their main liability is that the 64-bit multiply and
64-bit remainder operations are quite expensive for the mere 32 (or so) bits of the
result.

state: x (unsigned 64-bit)
initialize: 1<x<m-1
update: X < ax (mod m)

canuse as random: x (1 <x <m —1)orlow 32 bits
can use in bit mix:  (same)
period: m—1

The parameter values below were kindly computed for us by P. L’Ecuyer. The
multipliers are about the best that can be obtained for the prime moduli, close to
powers of 2, shown. Although the recommended use is for only the low 32 bits
(which all pass Diehard), you can see that (depending on the modulus) as many
as 43 reasonably good bits can be obtained for the cost of the 64-bit multiply and
remainder operations.

1D m a

El 239 _7 = 549755813881 | 10014146
E2 30508823
E3 25708129
E4 241 _21 = 2199023255531 5183781
E5 1070739
E6 6639568
E7 242 _ 11 = 4398046511093 1781978
E8 2114307
E9 1542852
E10 | 2*3 — 57 = 8796093022151 2096259
Ell 2052163
El12 2006881

(F) MLCG with m > 232, m Prime, and a(m — 1) ~ 2%4. A variant, for use
in combined generators, is to choose m and a to make a(m — 1) as close as possible
to 24, while still requiring that m be prime and that a pass the spectral test. The
purpose of this maneuver is to make ax a 64-bit value with good randomness in its
high bits, for use in combined generators. The expense of the multiply and remainder
operations is still the big liability, however. The low 32 bits of x are not significantly
less random than those of the previous MLCG generators E1-E12.
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state: x (unsigned 64-bit)
initialize: l<x<m-—-1
update: X < ax (mod m)

canuse asrandom: x (1 <x <m —1)orlow 32bits x
can use in bit mix:  ax (but don’t use both ax and x) %

can improve by: output 64-bit xorshift successor of ax
period: m—1
ID m a

F1 | 1148 x 232 4+ 11 = 4930622455819 | 3741260
F2 | 1264 x 232 +9 = 5428838662153 | 3397916
F3 | 2039 x 232 +3 = 8757438316547 | 2106408

7.1.3 How to Construct Combined Generators

While the construction of combined generators is an art, it should be informed
by underlying mathematics. Rigorous theorems about combined generators are usu-
ally possible only when the generators being combined are algorithmically related;
but that in itself is usually a bad thing to do, on the general principle of “don’t put all
your eggs in one basket.” So, one is left with guidelines and rules of thumb.

The methods being combined should be independent of one another. They must
share no state (although their initializations are allowed to derive from some conve-
nient common seed). They should have different, incommensurate, periods. And,
ideally, they should “look like” each other algorithmically as little as possible. This
latter criterion is where some art necessarily enters.

The output of the combination generator should in no way perturb the indepen-
dent evolution of the individual methods, nor should the operations effecting combi-
nation have any side effects.

The methods should be combined by binary operations whose output is no less
random than one input if the other input is held fixed. For 32- or 64-bit unsigned
arithmetic, this in practice means that only the + and A operators can be used. As an
example of a forbidden operator, consider multiplication: If one operand is a power
of 2, then the product will end in trailing zeros, no matter how random is the other
operand.

All bit positions in the combined output should depend on high-quality bits from
at least two methods, and may also depend on lower-quality bits from additional
methods. In the tables above, the bits labeled “can use as random” are considered
high quality; those labeled “can use in bit mix” are considered low quality, unless
they also pass a statistical suite such as Diehard.

There is one further trick at our disposal, the idea of using a method as a succes-
sor relation instead of as a generator in its own right. Each of the methods described
above is a mapping from some 64-bit state x; to a unique successor state x; ;. For a
method to pass a good statistical test suite, it must have no detectable correlations be-
tween a state and its successor. If, in addition, the method has period 264 or 264 1,
then all values (except possibly zero) occur exactly once as successor states.

Suppose we take the output of a generator, say C1 above, with period 24, and
run it through generator A6, whose period is 2% — 1, as a successor relation. This is
conveniently denoted by “A6(C1),” which we will call a composed generator. Note
that the composed output is emphatically not fed back into the state of C1, which
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continues unperturbed. The composed generator A6(C1) has the period of C1, not,
unfortunately, the product of the two periods. But its random mapping of C1’s output
values effectively fixes C1’s problems with short-period low bits. (The better so if
the form of A6 with left-shift first is used.) And, A6(C1) will also fix A6’s weakness
that a bit depends only on a few bits of the previous state. We will thus consider a
carefully constructed composed generator as being a combined generator, on a par
with direct combining via 4 or A.

Composition is inferior to direct combining in that it costs almost as much but
does not increase the size of the state or the length of the period. It is superior to
direct combining in its ability to mix widely differing bit positions. In the previous
example we would not have accepted A6+C1 as a combined generator, because the
low bits of C1 are so poor as to add little value to the combination; but A6(C1) has no
such liability, and much to recommend it. In the preceding summary tables of each
method, we have indicated recommended combinations for composed generators in
the table entries, “‘can improve by.”

We can now completely describe the generator in Ran, above, by the pseudo-
equation,

Ran = [A1;(C3) + A3,] ABI1 (7.1.2)
that is, the combination and/or composition of four different generators. For the
methods Al and A3, the subscripts / and r denote whether a left- or right-shift oper-
ation is done first. The period of Ran is the least common multiple of the periods of
C3, A3, and B1.

The simplest and fastest generator that we can readily recommend is

Ranql = DI(Al,) (7.1.3)

implemented as

struct Ranql {
Recommended generator for everyday use. The period is ~ 1.8 x 101?. Calling conventions
same as Ran, above.

Ullong v;

Ranql(Ullong j) : v(4101842887655102017LL) {
v "= 3;
v = int64();

b

inline Ullong int64() {
v "=v >> 21; v "= v << 35; v "= v > 4;

return v * 2685821657736338717LL;
}
inline Doub doub() { return 5.42101086242752217E-20 * int64(); }
inline Uint int32() { return (Uint)int64(); }
};

Ranql generates a 64-bit random integer in 3 shifts, 3 xors, and one multiply,
or a double floating value in one additional multiply. Its method is concise enough to
go easily inline in an application. It has a period of “only” 1.8 x 10!, so it should not
be used by an application that makes more than ~ 1012 calls. With that restriction,
we think that Ranq1l will do just fine for 99.99% of all user applications, and that
Ran can be reserved for the remaining 0.01%.

If the “short” period of Rang1 bothers you (which it shouldn’t), you can instead
use

Rang2 = A3, A BI1 (7.1.4)

ran.h
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whose period is 8.5 x 1037,

struct Rang2 {
Backup generator if Ranql has too short a period and Ran is too slow. The period is ~ 8.5 X
1037, Calling conventions same as Ran, above.

Ullong v,w;
Rang2(Ullong j) : v(4101842887655102017LL), w(1) {
v "= 3;
w = int64();
v = int64();
}
inline Ullong int64() {
v "=v >> 17; v "= v << 31; v "= v >> 8;

w = 4294957665U* (w & Oxffffffff) + (w >> 32);
return v ° w;

}
inline Doub doub() { return 5.42101086242752217E-20 * int64(); }
inline Uint int32() { return (Uint)int64(); }

7.1.4 Random Hashes and Random Bytes

Every once in a while, you want a random sequence H; whose values you can
visit or revisit in any order of i ’s. That is to say, you want a random hash of the inte-
gers i, one that passes serious tests for randomness, even for very ordered sequences
of i’s. In the language already developed, you want a generator that has no state at
all and is built entirely of successor relationships, starting with the value i.

An example that easily passes the Diehard test is

Ranhash = A2;(D3(A7,(C1(i)))) (7.1.5)

Note the alternation between successor relations that utilize 64-bit multiplication and
ones using shifts and XORs.

struct Ranhash {
High-quality random hash of an integer into several numeric types.
inline Ullong int64(Ullong u) {
Returns hash of u as a 64-bit integer.
Ullong v = u * 3935559000370003845LL + 2691343689449507681LL;

v T=v >> 21; v "= v <K 37; v T=v >> 4;
v k= 4768777513237032717LL;
v "= v << 20; v "= v >> 41; v "= v << b5;

return v,

}

inline Uint int32(Ullong u)

Returns hash of u as a 32-bit integer.
{ return (Uint) (int64(u) & Oxffffffff) ; }

inline Doub doub(Ullong u)

Returns hash of u as a double-precision floating value between 0. and 1.
{ return 5.42101086242752217E-20 * int64(u); }

Since Ranhash has no state, it has no constructor. You just call its int64 (i)
function, or any of its other functions, with your value of i whenever you want.

Random Bytes. In a different set of circumstances, you may want to generate
random integers a byte at a time. You can of course pull bytes out of any of the above
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recommended combination generators, since they are constructed to be equally good
on all bits. The following code, added to any of the generators above, augments them
with an int8 () method. (Be sure to initialize bc to zero in the constructor.)

Ullong breg;
Int bc;
inline unsigned char int8() {
if (bc--) return (unsigned char) (breg >>= 8);
breg = int64();
bc = 7;
return (unsigned char)breg;

}

If you want a more byte-oriented, though not necessarily faster, algorithm, an
interesting one — in part because of its interesting history — is Rivest’s RC4, used in
many Internet applications. RC4 was originally a proprietary algorithm of RSA, Inc.,
but it was protected simply as a trade secret and not by either patent or copyright.
The result was that when the secret was breached, by an anonymous posting to the
Internet in 1994, RC4 became, in almost all respects, public property. The name
RC4 is still protectable, and is a trademark of RSA. So, to be scrupulous, we give the
following implementation another name, Ranbyte.

struct Ranbyte {
Generator for random bytes using the algorithm generally known as RC4.
Int s[256],i,j,ss;
Uint v;
Ranbyte(Int u) {
Constructor. Call with any integer seed.
v = 2244614371U ~ u;
for (i=0; i<256; i++) {s[i] = i;}
for (j=0, i=0; i<256; i++) {
ss = s[i];
j=( +ss+ (v > 24)) & Oxff;
s[i] = s[jl; s[j] = ss;
v = (v << 24) | (v > 8);
}
i=3=0;
for (Int k=0; k<256; k++) int8();
}
inline unsigned char int8() {
Returns next random byte in the sequence.
i = (i+1) & Oxff;
ss = s[i];
j = (j+ss) & Oxff;
s[il = s[jl; s[jl = ss;
return (unsigned char) (s[(s[il+s[j]) & Oxff]);
}
Uint int320) {
Returns a random 32-bit integer constructed from 4 random bytes. Slow!
v = 0;
for (int k=0; k<4; k++) {
i = (i+1) & Oxff;
ss = s[i];
j = (j+ss) & Oxff;
s[il = s[jl; s[j] = ss;
v = (v << 8) | sl(s[il+s[j]1) & 0xff];
}

return v;

ran.h
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Doub doub() {
Returns a random double-precision floating value between 0. and 1. Slow!!
return 2.32830643653869629E-10 * ( int32() +
2.32830643653869629E-10 * int32() );

};

Notice that there is a lot of overhead in starting up an instance of Ranbyte, so
you should not create instances inside loops that are executed many times. The meth-
ods that return 32-bit integers, or double floating-point values, are slow in compari-
son to the other generators above, but are provided in case you want to use Ranbyte
as a test substitute for another, perhaps questionable, generator.

If you find any nonrandomness at all in Ranbyte, don’t tell us. But there are
several national cryptological agencies that might, or might not, want to talk to you!

7.1.5 Faster Floating-Point Values

The steps above that convert a 64-bit integer to a double-precision floating-point
value involves both a nontrivial type conversion and a 64-bit floating multiply. They
are performance bottlenecks. One can instead directly move the random bits into
the right place in the double word with union structure, a mask, and some 64-bit
logical operations; but in our experience this is not significantly faster.

To generate faster floating-point values, if that is an absolute requirement, we
need to bend some of our design rules. Here is a variant of “Knuth’s subtractive
generator,” which is a so-called lagged Fibonacci generator on a circular list of 55
values, with lags 24 and 55. Its interesting feature is that new values are generated
directly as floating point, by the floating-point subtraction of two previous values.

struct Ranfib {
Implements Knuth's subtractive generator using only floating operations. See text for cautions.
Doub dtab[55], dd;
Int inext, inextp;
Ranfib(Ullong j) : inext(0), inextp(31) {
Constructor. Call with any integer seed. Uses Ranql to initialize.
Ranql init(j);
for (int k=0; k<b55; k++) dtablk] = init.doub();
}
Doub doub() {
Returns random double-precision floating value between 0. and 1.
if (++inext == 55) inext = 0;
if (++inextp == 55) inextp = 0;
dd = dtab[inext] - dtabl[inextp];
if (dd < 0) dd += 1.0;
return (dtab[inext] = dd);
}
inline unsigned long int32()
Returns random 32-bit integer. Recommended only for testing purposes.
{ return (unsigned long) (doub() * 4294967295.0);}
};

The int32 method is included merely for testing, or incidental use. Note also
that we use Ranql to initialize Ranfib’s table of 55 random values. See earlier
editions of Knuth or Numerical Recipes for a (somewhat awkward) way to do the
initialization purely internally.

Ranfib fails the Diehard “birthday test,” which is able to discern the simple
relation among the three values at lags 0, 24, and 55. Aside from that, it is a good,
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but not great, generator, with speed as its principal recommendation.

7.1.6 Timing Results

Timings depend so intimately on highly specific hardware and compiler details,
that it is hard to know whether a single set of tests is of any use at all. This is espe-
cially true of combined generators, because a good compiler, or a CPU with sophis-
ticated instruction look-ahead, can interleave and pipeline the operations of the indi-
vidual methods, up to the final combination operations. Also, as we write, desktop
computers are in transition from 32 bits to 64, which will affect the timing of 64-bit
operations. So, you ought to familiarize yourself with C’s “clock_t clock(void)”
facility and run your own experiments.

That said, the following tables give typical results for routines in this section,
normalized to a 3.4 GHz Pentium CPU, vintage 2004. The units are 10° returned
values per second. Large numbers are better.

Generator | int64() | doub() | int8()
Ran 19 10 51
Ranql 39 13 59
Rang2 32 12 58
Ranfib 24

Ranbyte 43

The int8() timings for Ran, Ranq1, and Rang? refer to versions augmented as
indicated above.

7.1.7 When You Have Only 32-Bit Arithmetic

Our best advice is: Get a better compiler! But if you seriously must live in a
world with only unsigned 32-bit arithmetic, then here are some options. None of
these individually pass Diehard.

(G) 32-Bit Xorshift RNG

state: x (unsigned 32-bit)
initialize: x#0
update: X < xA((x > by),

X < x A (x << by),

X < xA(x > b3);

or X < xA(x << by),

X < xA(x > by),

X < x A(x << b3);
can use as random:  x (32 bits, with caution)
can use in bit mix:  x (32 bits)
can improve by: output 32-bit MLCG successor
period: 232 1
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ID | by | by | b3
Gl |13 |17 ] 5
G2 |7 |13] 3
G3 | 9 |17 6
G4 | 6 |13 ] 5
G5| 9 |21} 2
G6 |17 | 15| 5
G7| 3 |13 |7
G8 | 5 |13 ] 6
GO |12 21| 5

(H) MWC with Base b = 216

state:
initialize:
update:

can use as random:
can use in bit mix:

can improve by:
period:

(I) LCG Modulo 232

state:

initialize:

update:

X, ¥ (unsigned 32-bit)

1 <x,y<2l¢—1

x<«a(x & 21 —1]) + (x > 16)
y<b(y & 2'—1]) + (y > 16)

(x << 16) +y

same, or (with caution) x or y

output 32-bit xorshift successor

(2'%a —2)(2'%h — 2) /4 (product of two primes)

ID a b

H1 | 62904 | 41874
H2 | 64545 | 34653
H3 | 34653 | 64545
H4 | 57780 | 55809
H5 | 48393 | 57225
H6 | 63273 | 33378

X (unsigned 32-bit)
any value
X < ax + ¢ (mod 232)

can use as random: not recommended
can use in bit mix:  not recommended

can improve by: output 32-bit xorshift successor
period: 232

1)) a ¢ (any odd ok)

I1 | 1372383749 1289706101

12 | 2891336453 1640531513

13 | 2024337845 797082193

14 32310901 626627237

I5 29943829 1013904223
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(J) MLCG Modulo 232
state: X (unsigned 32-bit)
initialize: x#0
update: x < ax (mod 23?)

can use as random: not recommended

can use in bit mix:  not recommended

can improve by: output 32-bit xorshift successor
period: 230

1D a

J1 | 1597334677
J2 741103597
J3 | 1914874293
J4 990303917
J5 747796405

A high-quality, if somewhat slow, combined generator is
Ranlim32 = [G3;(I12) + G1,] A [G6; (H6p) + HS5p] (7.1.6)
implemented as

struct Ranlim32 {
High-quality random generator using only 32-bit arithmetic. Same conventions as Ran. Period
~ 3.11 x 1037, Recommended only when 64-bit arithmetic is not available.
Uint u,v,wl,w2;
Ranlim32(Uint j) : v(2244614371U), w1(521288629U), w2(362436069U) {
u=j " v; int320);
v = u; int32Q);

}
inline Uint int32() {
u = u * 28913364530 + 1640531513U;
v "=v >> 13; v "= v <K 17; v "= v >> b;

wl = 33378 * (w1l & Oxffff) + (wl >> 16);

w2 = 57225 * (w2 & Oxffff) + (w2 >> 16);

Uint x =u ~ (W << 9); x "= x > 17; x "= x <L 6;
Uint y = w1 = (w1l << 17); y "=y > 15; y "= y << 5;
return (x + v) =~ (y + w2);

}
inline Doub doub() { return 2.32830643653869629E-10 * int32(); }
inline Doub truedoub() {
return 2.32830643653869629E-10 * ( int32() +
2.32830643653869629E-10 * int32() );

Note that the doub () method returns floating-point numbers with only 32 bits
of precision. For full precision, use the slower truedoub () method.
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7.2 Completely Hashing a Large Array

We introduced the idea of a random hash or hash function in §7.1.4. Once in a while
we might want a hash function that operates not on a single word, but on an entire array of
length M. Being perfectionists, we want every single bit in the hashed output array to depend
on every single bit in the given input array. One way to achieve this is to borrow structural
concepts from algorithms as unrelated as the Data Encryption Standard (DES) and the Fast
Fourier Transform (FFT)!

DES, like its progenitor cryptographic system LUCIFER, is a so-called “block product
cipher” [1]. Tt acts on 64 bits of input by iteratively applying (16 times, in fact) a kind of highly
nonlinear bit-mixing function. Figure 7.2.1 shows the flow of information in DES during this
mixing. The function g, which takes 32 bits into 32 bits, is called the “cipher function.” Meyer
and Matyas [1] discuss the importance of the cipher function being nonlinear, as well as other
design criteria.

DES constructs its cipher function g from an intricate set of bit permutations and table
lookups acting on short sequences of consecutive bits. For our purposes, a different function g
that can be rapidly computed in a high-level computer language is preferable. Such a function
probably weakens the algorithm cryptographically. Our purposes are not, however, crypto-
graphic: We want to find the fastest g, and the smallest number of iterations of the mixing
procedure in Figure 7.2.1, such that our output random sequence passes the tests that are cus-
tomarily applied to random number generators. The resulting algorithm is not DES, but rather
a kind of “pseudo-DES,” better suited to the purpose at hand.
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Figure 7.2.1. The Data Encryption Standard (DES) iterates a nonlinear function g on two 32-bit words,
in the manner shown here (after Meyer and Matyas [1]).

Following the criterion mentioned above, that g should be nonlinear, we must give the
integer multiply operation a prominent place in g. Confining ourselves to multiplying 16-
bit operands into a 32-bit result, the general idea of g is to calculate the three distinct 32-
bit products of the high and low 16-bit input half-words, and then to combine these, and
perhaps additional fixed constants, by fast operations (e.g., add or exclusive-or) into a single
32-bit result.

There are only a limited number of ways of effecting this general scheme, allowing
systematic exploration of the alternatives. Experimentation and tests of the randomness of
the output lead to the sequence of operations shown in Figure 7.2.2. The few new elements
in the figure need explanation: The values C1 and Cy are fixed constants, chosen randomly
with the constraint that they have exactly 16 1-bits and 16 0-bits; combining these constants
via exclusive-or ensures that the overall g has no bias toward 0- or 1-bits. The “reverse half-
words” operation in Figure 7.2.2 turns out to be essential; otherwise, the very lowest and very
highest bits are not properly mixed by the three multiplications.

It remains to specify the smallest number of iterations N;; that we can get away with.
For purposes of this section, we recommend N;; = 2. We have not found any statistical devi-
ation from randomness in sequences of up to 10° random deviates derived from this scheme.
However, we include C1 and C5 constants for N;; < 4.

void psdes(Uint &lword, Uint &rword) {
Pseudo-DES hashing of the 64-bit word (lword,rword). Both 32-bit arguments are returned
hashed on all bits.
const int NITER=2;
static const Uint c1[4]={
0xbaa96887L, 0xl1lel17d32cL, 0x03bcdc3clL, 0x0£f33d1b2L};
static const Uint c2[4]={
0x4b0f3b58L, 0xe874f0c3L, 0x6955cbab6l, Oxb55a7cad6L};
Uint i,ia,ib,iswap,itmph=0,itmpl=0;
for (i=0;i<NITER;i++) {
Perform niter iterations of DES logic, using a simpler (noncryptographic) nonlinear func-
tion instead of DES's.
ia = (iswap=rword) ~ c1[il; The bit-rich constants c1 and (below)
itmpl = ia & Oxffff; c2 guarantee lots of nonlinear mix-
itmph = ia >> 16; ing.

hashall.h
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Figure 7.2.2. The nonlinear function g used by the routine psdes.

ib=itmpl*itmpl+ ~(itmph*itmph) ;
rword = lword ~ (((ia = (ib >> 16) |

((ib & Oxffff) << 16)) ~ c2[i])+itmpl*itmph);
lword = iswap;

Thus far, this doesn’t seem to have much to do with completely hashing a large array.
However, psdes gives us a building block, a routine for mutually hashing two arbitrary 32-bit
integers. We now turn to the FFT concept of the butterfly to extend the hash to a whole array.

The butterfly is a particular algorithmic construct that applies to an array of length N,
a power of 2. It brings every element into mutual communication with every other element
in about N log, N operations. A useful metaphor is to imagine that one array element has a
disease that infects any other element with which it has contact. Then the butterfly has two
properties of interest here: (i) After its log, N stages, everyone has the disease. Furthermore,
(ii) after j stages, 2/ elements are infected; there is never an “eye of the needle” or “necking
down” of the communication path.

The butterfly is very simple to describe: In the first stage, every element in the first half
of the array mutually communicates with its corresponding element in the second half of the
array. Now recursively do this same thing to each of the halves, and so on. We can see by
induction that every element now has a communication path to every other one: Obviously it
works when N = 2. And if it works for N, it must also work for 2N, because the first step
gives every element a communication path into both its own and the other half of the array,
after which it has, by assumption, a path everywhere.

We need to modify the butterfly slightly, so that our array size M does not have to be a
power of 2. Let N be the next larger power of 2. We do the butterfly on the (virtual) size N,
ignoring any communication with nonexistent elements larger than M. This, by itself, doesn’t
do the job, because the later elements in the first N/2 were not able to “infect” the second N /2
(and similarly at later recursive levels). However, if we do one extra communication between
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elements of the first N/2 and second N/2 at the very end, then all missing communication
paths are restored by traveling through the first N/2 elements.

The third line in the following code is an idiom that sets n to the next larger power of 2
greater or equal to m, a miniature masterpiece due to S.E. Anderson [2]. If you look closely,
you’ll see that it is itself a sort of butterfly, but now on bits!

void hashall(VecUint &arr) {
Replace the array arr by a same-sized hash, all of whose bits depend on all of the bits in arr.
Uses psdes for the mutual hash of two 32-bit words.
Int m=arr.size(), n=m-1;
n|l=n>>1; n|=n>>2; nl|=n>>4; n|=n>>8; n|=n>>16; n++;
Incredibly, n is now the next power of 2 > m.
Int nb=n,nb2=n>>1,j,jb;
if (n<2) throw("size must be > 1");
while (nb > 1) {
for (jb=0;jb<n-nb+1;jb+=nb)
for (j=0;j<nb2;j++)
if (jb+j+nb2 < m) psdes(arr[jb+j],arr[jb+j+nb2]);
nb = nb2;
nb2 >>= 1;
}
nb2 = n>>1;
if (m != n) for (j=nb2;j<m;j++) psdes(arr[j],arr[j-nb2]);
Final mix needed only if m is not a power of 2.

CITED REFERENCES AND FURTHER READING:

Meyer, C.H. and Matyas, S.M. 1982, Cryptography: A New Dimension in Computer Data Security
(New York: Wiley).[1]

Zonst, A.E. 2000, Understanding the FFT, 2nd revised ed. (Titusville, FL: Citrus Press).
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cation, number 46 (Washington: U.S. Department of Commerce, National Bureau of Stan-
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7.3 Deviates from Other Distributions

In §7.1 we learned how to generate random deviates with a uniform probability
between 0 and 1, denoted U(0, 1). The probability of generating a number between
x and x + dx is

dx 0<x<l

dx = 7.3.1
plx)dx 0 otherwise ( )

and we write
x ~U(0,1) (7.3.2)
As in §6.14, the symbol ~ can be read as “is drawn from the distribution.”
In this section, we learn how to generate random deviates drawn from other
probability distributions, including all of those discussed in §6.14. Discussion of
specific distributions is interleaved with the discussion of the general methods used.

hashall.h
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7.3.1 Exponential Deviates

Suppose that we generate a uniform deviate x and then take some prescribed
function of it, y (x). The probability distribution of y, denoted p(y)dy, is determined
by the fundamental transformation law of probabilities, which is simply

lp(y)dy| = |p(x)dx]| (7.3.3)
or d
X
p(y) = px) ‘d—‘ (7.3.4)
y
As an example, take
y(x) = —In(x) (7.3.5)
with x ~ U(0, 1). Then
dx _
p(y)dy = ’5‘ dy = e Ydy (7.3.6)

which is the exponential distribution with unit mean, Exponential (1), discussed in
§6.14.5. This distribution occurs frequently in real life, usually as the distribution
of waiting times between independent Poisson-random events, for example the ra-
dioactive decay of nuclei. You can also easily see (from 7.3.6) that the quantity y/f
has the probability distribution fe ™8, so

v/ B ~ Exponential (8) (7.3.7)

We can thus generate exponential deviates at a cost of about one uniform devi-
ate, plus a logarithm, per call.

struct Expondev : Ran {
Structure for exponential deviates.
Doub beta;
Expondev(Doub bbeta, Ullong i) : Ran(i), beta(bbeta) {}
Constructor arguments are 8 and a random sequence seed.
Doub dev() {
Return an exponential deviate.
Doub u;
do u = doub(); while (u == 0.);
return -log(u)/beta;
}

Our convention here and in the rest of this section is to derive the class for each
kind of deviate from the uniform generator class Ran. We use the constructor to
set the distribution’s parameters and set the initial seed for the generator. We then
provide a method dev () that returns a random deviate from the distribution.

7.3.2 Transformation Method in General

Let’s see what is involved in using the above transformation method to generate
some arbitrary desired distribution of y’s, say one with p(y) = f(y) for some
positive function f whose integral is 1. According to (7.3.4), we need to solve the
differential equation



7.3 Deviates from Other Distributions 363

1
Uniform @ = — - - o o o e e e oo o - o »,
deviate in ] F(y) =fgp(y)dy
1
1
X 1
1
I r®)
1
1
1
O 1
y :
\{
transformed

deviate out

Figure 7.3.1. Transformation method for generating a random deviate y from a known probability dis-
tribution p(¥). The indefinite integral of p(y) must be known and invertible. A uniform deviate x is
chosen between 0 and 1. Its corresponding y on the definite-integral curve is the desired deviate.

X _ ry) (7.3.8)

dy
But the solution of this is just x = F(y), where F(y) is the indefinite integral of
f(y). The desired transformation that takes a uniform deviate into one distributed as
f(y) is therefore

y(x) = F~1(x) (7.3.9)

where F~! is the inverse function to F. Whether (7.3.9) is feasible to implement
depends on whether the inverse function of the integral of f(y) is itself feasible to
compute, either analytically or numerically. Sometimes it is, and sometimes it isn’t.

Incidentally, (7.3.9) has an immediate geometric interpretation: Since F(y) is
the area under the probability curve to the left of y, (7.3.9) is just the prescription:
Choose a uniform random x, then find the value y that has that fraction x of proba-
bility area to its left, and return the value y. (See Figure 7.3.1.)

7.3.3 Logistic Deviates

Deviates from the logistic distribution, as discussed in §6.14.4, are readily gen-
erated by the transformation method, using equation (6.14.15). The cost is again
dominated by one uniform deviate, and a logarithm, per logistic deviate.

struct Logisticdev : Ran {
Structure for logistic deviates.
Doub mu,sig;
Logisticdev(Doub mmu, Doub ssig, Ullong i) : Ran(i), mu(mmu), sig(ssig) {}
Constructor arguments are i, o, and a random sequence seed.
Doub dev() {
Return a logistic deviate.
Doub u;
do u = doub(); while (u*x(1.-u) == 0.);
return mu + 0.551328895421792050*sig*log(u/(1.-u));
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7.3.4 Normal Deviates by Transformation (Box-Muller)

Transformation methods generalize to more than one dimension. If x1, x5, ...
are random deviates with a joint probability distribution p(xy, x2,...)dx1dx, ...,
and if yq, y», ... are each functions of all the x’s (same number of y’s as x’s), then
the joint probability distribution of the y’s is

B(xl,xz, .. )

dyidy, . .. 7.3.10
3()’1,)’2,---)‘ iy ( )

p(y1.y2,..)dyidys ... = p(xl,xz,...)‘

where |d( )/d( )| is the Jacobian determinant of the x’s with respect to the y’s
(or the reciprocal of the Jacobian determinant of the y’s with respect to the x’s).

An important historical example of the use of (7.3.10) is the Box-Muller method
for generating random deviates with a normal (Gaussian) distribution (§6.14.1):

1
p(y)dy = Ee‘yz/zdy (7.3.11)

Consider the transformation between two uniform deviates on (0,1), x1, x>, and two
quantities yp, ya,

y1 =+ —2Inx;cos2mx,

(7.3.12)
V2 = v/ —2Inx;sin2mx,
Equivalently we can write
1
X1 = exp |:—§(J’f + y%)]
(7.3.13)
Y2
Xy = —— arctan —
27 N
Now the Jacobian determinant can readily be calculated (try it!):
d 3
Wwrxa) oy | _ [ 1 e—y%ﬂ} [—1 e_y%/2:| (73.14)
(y1, y2) gyif g% N 2m V27

Since this is the product of a function of y, alone and a function of y; alone, we see
that each y is independently distributed according to the normal distribution (7.3.11).

One further trick is useful in applying (7.3.12). Suppose that, instead of picking
uniform deviates x; and x, in the unit square, we instead pick vy and v, as the
ordinate and abscissa of a random point inside the unit circle around the origin. Then
the sum of their squares, R?2 = vf + v%, 1s a uniform deviate, which can be used for
X1, while the angle that (vq, v2) defines with respect to the vq-axis can serve as the
random angle 27 x,. What’s the advantage? It’s that the cosine and sine in (7.3.12)
can now be written as v /+/R2 and v,/~/R2, obviating the trigonometric function
calls! (In the next section we will generalize this trick considerably.)

Code for generating normal deviates by the Box-Muller method follows. Con-
sider it for pedagogical use only, because a significantly faster method for generating
normal deviates is coming, below, in §7.3.9.
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struct Normaldev_BM : Ran {
Structure for normal deviates.
Doub mu,sig;
Doub storedval;
Normaldev_BM(Doub mmu, Doub ssig, Ullong i)
: Ran(i), mu(mmu), sig(ssig), storedval(0.) {}
Constructor arguments are 1, o, and a random sequence seed.
Doub dev() {
Return a normal deviate.
Doub v1,v2,rsq,fac;

if (storedval == 0.) { We don’t have an extra deviate handy, so
do {
v1=2.0*doub()-1.0; pick two uniform numbers in the square ex-
v2=2.0*doub()-1.0; tending from -1 to +1 in each direction,
rsq=vi*vi+v2xv2; see if they are in the unit circle,
} while (rsq >= 1.0 || rsq == 0.0); or try again.
fac=sqrt(-2.0*log(rsq)/rsq);  Now make the Box-Muller transformation to
storedval = vixfac; get two normal deviates. Return one and
return mu + sig*v2xfac; save the other for next time.
} else { We have an extra deviate handy,

fac = storedval;
storedval = O0.;
return mu + sigxfac; so return it.

7.3.5 Rayleigh Deviates
The Rayleigh distribution is defined for positive z by

p(z)dz = zexp (—%22) dz (z>0) (7.3.15)

Since the indefinite integral can be done analytically, and the result easily inverted, a
simple transformation method from a uniform deviate x results:

z=+~-2Inx, x~U(Q,1) (7.3.16)

A Rayleigh deviate z can also be generated from two normal deviates y; and

y2 by
z=4/y+3 y1.y2~N(,1) (7.3.17)

Indeed, the relation between equations (7.3.16) and (7.3.17) is immediately evident
in the equation for the Box-Muller method, equation (7.3.12), if we square and sum
that method’s two normal deviates y; and y,.

7.3.6 Rejection Method

The rejection method is a powerful, general technique for generating random
deviates whose distribution function p(x)dx (probability of a value occurring be-
tween x and x 4 dx) is known and computable. The rejection method does not re-
quire that the cumulative distribution function (indefinite integral of p(x)) be readily
computable, much less the inverse of that function — which was required for the
transformation method in the previous section.

The rejection method is based on a simple geometrical argument (Figure 7.3.2):
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Figure 7.3.2. Rejection method for generating a random deviate x from a known probability distribution
p(x) that is everywhere less than some other function f(x). The transformation method is first used to
generate a random deviate x of the distribution f (compare Figure 7.3.1). A second uniform deviate is
used to decide whether to accept or reject that x. If it is rejected, a new deviate of f is found, and so on.
The ratio of accepted to rejected points is the ratio of the area under p to the area between p and f.

Draw a graph of the probability distribution p(x) that you wish to generate, so
that the area under the curve in any range of x corresponds to the desired probability
of generating an x in that range. If we had some way of choosing a random point in
two dimensions, with uniform probability in the area under your curve, then the x
value of that random point would have the desired distribution.

Now, on the same graph, draw any other curve f(x) that has finite (not infinite)
area and lies everywhere above your original probability distribution. (This is always
possible, because your original curve encloses only unit area, by definition of prob-
ability.) We will call this f(x) the comparison function. Imagine now that you have
some way of choosing a random point in two dimensions that is uniform in the area
under the comparison function. Whenever that point lies outside the area under the
original probability distribution, we will reject it and choose another random point.
Whenever it lies inside the area under the original probability distribution, we will
accept it.

It should be obvious that the accepted points are uniform in the accepted area,
so that their x values have the desired distribution. It should also be obvious that
the fraction of points rejected just depends on the ratio of the area of the comparison
function to the area of the probability distribution function, not on the details of shape
of either function. For example, a comparison function whose area is less than 2 will
reject fewer than half the points, even if it approximates the probability function very
badly at some values of x, e.g., remains finite in some region where p(x) is zero.

It remains only to suggest how to choose a uniform random point in two dimen-
sions under the comparison function f(x). A variant of the transformation method
(§7.3) does nicely: Be sure to have chosen a comparison function whose indefinite
integral is known analytically, and is also analytically invertible to give x as a func-
tion of “area under the comparison function to the left of x.” Now pick a uniform
deviate between 0 and A, where A is the total area under f(x), and use it to get a
corresponding x. Then pick a uniform deviate between 0 and f(x) as the y value
for the two-dimensional point. Finally, accept or reject according to whether it is
respectively less than or greater than p(x).

So, to summarize, the rejection method for some given p(x) requires that one
find, once and for all, some reasonably good comparison function f(x). Thereafter,
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each deviate generated requires two uniform random deviates, one evaluation of f
(to get the coordinate y) and one evaluation of p (to decide whether to accept or
reject the point x, y). Figure 7.3.1 illustrates the whole process. Then, of course,
this process may need to be repeated, on the average, A times before the final deviate
is obtained.

7.3.7 Cauchy Deviates

The “further trick” described following equation (7.3.14) in the context of the
Box-Muller method is now seen to be a rejection method for getting trigonometric
functions of a uniformly random angle. If we combine this with the explicit formula,
equation (6.14.6), for the inverse cdf of the Cauchy distribution (see §6.14.2), we can
generate Cauchy deviates quite efficiently.

struct Cauchydev : Ran {
Structure for Cauchy deviates.
Doub mu,sig;
Cauchydev(Doub mmu, Doub ssig, Ullong i) : Ran(i), mu(mmu), sig(ssig) {}
Constructor arguments are 1, o, and a random sequence seed.
Doub dev() {
Return a Cauchy deviate.

Doub v1,v2;
do { Find a random point in the unit semicircle.
v1=2.0*doub()-1.0;
v2=doub () ;
} while (SQR(v1)+SQR(v2) >= 1. || v2 == 0.);
return mu + sig*vi/v2; Ratio of its coordinates is the tangent of a
} random angle.

7.3.8 Ratio-of-Uniforms Method

In finding Cauchy deviates, we took the ratio of two uniform deviates chosen
to lie within the unit circle. If we generalize to shapes other than the unit circle, and
combine it with the principle of the rejection method, a powerful variant emerges.
Kinderman and Monahan [1] showed that deviates of virtually any probability distri-
bution p(x) can be generated by the following rather amazing prescription:

e Construct the region in the (i, v) plane bounded by 0 < u < [p(v/u)]*/2.

e Choose two deviates, u and v, that lie uniformly in this region.
e Return v/u as the deviate.

Proof: We can represent the ordinary rejection method by the equation in the

(x, p) plane,
p'=p(x)

p(x)dx = / dp'dx (7.3.18)
p'=

Since the integrand is 1, we are justified in sampling uniformly in (x, p’) as long as
p’ is within the limits of the integral (that is, 0 < p’ < p(x)). Now make the change
of variable

v
u (7.3.19)
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0.75

Figure 7.3.3. Ratio-of-uniforms method. The interior of this teardrop shape is the acceptance region for
the normal distribution: If a random point is chosen inside this region, then the ratio v/u will be a normal
deviate.

Then equation (7.3.18) becomes

p'=px) u=vrX) j(p, x) u=+/p(/u)

p(x)dx = / dp'dx = / —Zdudv = 2/ du dv
p’'=0 u u

(7.3.20)

=0 d(u,v)
because (as you can work out) the Jacobian determinant is the constant 2. Since the
new integrand is constant, uniform sampling in (u, v) with the limits indicated for u
is equivalent to the rejection method in (x, p).

The above limits on u very often define a region that is “teardrop” shaped. To
see why, note that the locii of constant x = v/u are radial lines. Along each radial,
the acceptance region goes from the origin to a point where u? = p(x). Since most
probability distributions go to zero for both large and small x, the acceptance region
accordingly shrinks toward the origin along radials, producing a teardrop. Of course,
it is the exact shape of this teardrop that matters. Figure 7.3.3 shows the shape of the
acceptance region for the case of the normal distribution.

Typically this ratio-of-uniforms method is used when the desired region can
be closely bounded by a rectangle, parallelogram, or some other shape that is easy
to sample uniformly. Then, we go from sampling the easy shape to sampling the
desired region by rejection of points outside the desired region.

An important adjunct to the ratio-of-uniforms method is the idea of a squeeze. A
squeeze is any easy-to-compute shape that tightly bounds the region of acceptance of
a rejection method, either from the inside or from the outside. Best of all is when you
have squeezes on both sides. Then you can immediately reject points that are outside
the outer squeeze and immediately accept points that are inside the inner squeeze.
Only when you have the bad luck of drawing a point between the two squeezes do
you actually have to do the more lengthy computation of comparing with the actual
rejection boundary. Squeezes are useful both in the ordinary rejection method and in
the ratio-of-uniforms method.

=0

7.3.9 Normal Deviates by Ratio-of-Uniforms

Leva [2] has given an algorithm for normal deviates that uses the ratio-of-uni-
forms method with great success. He uses quadratic curves to provide both inner
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and outer squeezes that hug the desired region in the (u,v) plane (Figure 7.3.3).
Only about 1% of the time is it necessary to calculate an exact boundary (requiring
a logarithm).

The resulting code looks so simple and “un-transcendental” that it may be hard
to believe that exact normal deviates are generated. But they are!

struct Normaldev : Ran { deviates.h
Structure for normal deviates.

Doub mu,sig;

Normaldev(Doub mmu, Doub ssig, Ullong i)

: Ran(i), mu(mmu), sig(ssig){}

Constructor arguments are 1, o, and a random sequence seed.

Doub dev() {

Return a normal deviate.

Doub u,v,x,y,q;

do {
u = doub();
v = 1.7156*(doub()-0.5) ;
x = u - 0.449871;
y = abs(v) + 0.386595;
g = SQR(x) + y*(0.19600*y-0.25472%x) ;

} while (q > 0.27597
&& (q > 0.27846 || SQR(v) > -4.xlog(u)*SQR(u)));
return mu + sigxv/u;

Note that the while clause makes use of C’s (and C++’s) guarantee that logical
expressions are evaluated conditionally: If the first operand is sufficient to determine
the outcome, the second is not evaluated at all. With these rules, the logarithm is
evaluated only when q is between 0.27597 and 0.27846.

On average, each normal deviate uses 2.74 uniform deviates. By the way, even
though the various constants are given only to six digits, the method is exact (to
full double precision). Small perturbations of the bounding curves are of no conse-
quence. The accuracy is implicit in the (rare) evaluations of the exact boundary.

7.3.10 Gamma Deviates

The distribution Gamma(c, ) was described in §6.14.9. The B parameter en-
ters only as a scaling,

Gamma(x, f) = %Gamma(a, 1) (7.3.21)

(Translation: To generate a Gamma(c, ) deviate, generate a Gamma(w, 1) deviate
and divide it by S.)

If « is a small positive integer, a fast way to generate x ~ Gamma(c, 1) is to
use the fact that it is distributed as the waiting time to the «th event in a Poisson
random process of unit mean. Since the time between two consecutive events is just
the exponential distribution Exponential (1), you can simply add up « exponentially
distributed waiting times, i.e., logarithms of uniform deviates. Even better, since the
sum of logarithms is the logarithm of the product, you really only have to compute
the product of @ uniform deviates and then take the log. Because this is such a special
case, however, we don’t include it in the code below.
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When o < 1, the gamma distribution’s density function is not bounded, which
is inconvenient. However, it turns out [4] that if

y ~ Gamma(a + 1, 1), u ~ Uniform(0, 1) (7.3.22)

then
yul/% ~ Gamma(a, 1) (7.3.23)

We will use this in the code below.

For o > 1, Marsaglia and Tsang [5] give an elegant rejection method based on
a simple transformation of the gamma distribution combined with a squeeze. After
transformation, the gamma distribution can be bounded by a Gaussian curve whose
area is never more than 5% greater than that of the gamma curve. The cost of a
gamma deviate is thus only a little more than the cost of the normal deviate that
is used to sample the comparison function. The following code gives the precise
formulation; see the original paper for a full explanation.

struct Gammadev : Normaldev {
Structure for gamma deviates.
Doub alph, oalph, bet;
Doub al,a2;
Gammadev (Doub aalph, Doub bbet, Ullong i)
: Normaldev(0.,1.,i), alph(aalph), oalph(aalph), bet(bbet) {
Constructor arguments are &, B8, and a random sequence seed.
if (alph <= 0.) throw("bad alph in Gammadev");
if (alph < 1.) alph += 1.;
al = alph-1./3.;
a2 = 1./sqrt(9.*al);
}
Doub dev() {
Return a gamma deviate by the method of Marsaglia and Tsang.
Doub u,v,x;
do {
do {
x = Normaldev::dev();
v = 1. + a2*x;
} while (v <= 0.);
V = VKVHV;
u = doub();
} while (u > 1. - 0.331*SQR(SQR(x)) &&
log(u) > 0.5%SQR(x) + al*(1l.-v+log(v))); Rarely evaluated.
if (alph == oalph) return alx*v/bet;
else { Case where o < 1, per Ripley.
do u=doub(); while (u == 0.);
return pow(u,1./oalph)*al*v/bet;

There exists a sum rule for gamma deviates. If we have a set of independent
deviates y; with possibly different «;’s, but sharing a common value of f,

yi ~ Gamma(a;, f) (7.3.24)

then their sum is also a gamma deviate,

y =Y yi~Gamma(er,f), ar=y (7.3.25)
/ i

1
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If the «;’s are integers, you can see how this relates to the discussion of Poisson
waiting times above.

7.3.11 Distributions Easily Generated by Other Deviates

From normal, gamma and uniform deviates, we get a bunch of other distribu-
tions for free. Important: When you are going to combine their results, be sure that
all distinct instances of Normaldist, Gammadist, and Ran have different random
seeds! (Ran and its derived classes are sufficiently robust that seeds i,i + 1,...
are fine.)

Chi-Square Deviates (cf. §6.14.8)

This one is easy:

Chisquare(v) = Gamma(%, %) o~ 2Gamma<%, 1) (7.3.26)

Student-t Deviates (cf. §6.14.3)
Deviates from the Student-t distribution can be generated by a method very
similar to the Box-Muller method. The analog of equation (7.3.12) is

y =/ v(ul_z/v — 1)cos2mu, (7.3.27)

If u; and u, are independently uniform, U(0, 1), then
y ~ Student(v, 0, 1) (7.3.28)

or
U+ oy ~ Student(v, u, o) (7.3.29)

Unfortunately, you can’t do the Box-Muller trick of getting two deviates at a time,
because the Jacobian determinant analogous to equation (7.3.14) does not factor-
ize. You might want to use the polar method anyway, just to get cos 2wu,, but its
advantage is now not so large.

An alternative method uses the quotients of normal and gamma deviates. If we
have

v 1
X ~NO,1), y~ Gamma(z, 5) (7.3.30)
then
x+y/v/y ~ Student(v, 0, 1) (7.3.31)
Beta Deviates (cf. §6.14.11)
If
x ~ Gamma(c, 1), y ~ Gamma(g, 1) (7.3.32)
then
~ Beta(a, B) (7.3.33)
X+y
F-Distribution Deviates (cf. §6.14.10)
If
x ~ Beta(3 vy, 312) (7.3.34)

(see equation 7.3.33), then
Vo X

it F(vy, v2) (7.3.35)
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Figure 7.3.4. Rejection method as applied to an integer-valued distribution. The method is performed on
the step function shown as a dashed line, yielding a real-valued deviate. This deviate is rounded down to
the next lower integer, which is output.

7.3.12 Poisson Deviates

The Poisson distribution, Poisson(A), previously discussed in §6.14.13, is a dis-
crete distribution, so its deviates will be integers, k. To use the methods already
discussed, it is convenient to convert the Poisson distribution into a continuous dis-
tribution by the following trick: Consider the finite probability p(k) as being spread
out uniformly into the interval from k to k 4 1. This defines a continuous distribution
g (k)dk given by
ALkl =2

L ]!
where |k | represents the largest integer < k. If we now use a rejection method, or
any other method, to generate a (noninteger) deviate from (7.3.36), and then take the
integer part of that deviate, it will be as if drawn from the discrete Poisson distri-
bution. (See Figure 7.3.4.) This trick is general for any integer-valued probability
distribution. Instead of the “floor” operator, one can equally well use “ceiling” or
“nearest” — anything that spreads the probability over a unit interval.

For A large enough, the distribution (7.3.36) is qualitatively bell-shaped (albeit
with a bell made out of small, square steps). In that case, the ratio-of-uniforms
method works well. It is not hard to find simple inner and outer squeezes in the (u, v)
plane of the form v? = Q(u), where Q(u) is a simple polynomial in u. The only
trick is to allow a big enough gap between the squeezes to enclose the true, jagged,
boundaries for all values of A. (Look ahead to Figure 7.3.5 for a similar example.)

For intermediate values of A, the jaggedness is so large as to render squeezes
impractical, but the ratio-of-uniforms method, unadorned, still works pretty well.

For small A, we can use an idea similar to that mentioned above for the gamma
distribution in the case of integer a. When the sum of independent exponential

galk)dk = dk (7.3.36)
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deviates first exceeds A, their number (less 1) is a Poisson deviate k. Also, as ex-
plained for the gamma distribution, we can multiply uniform deviates from U(0, 1)
instead of adding deviates from Exponential (1).

These ideas produce the following routine.

struct Poissondev : Ran {
Structure for Poisson deviates.
Doub lambda, sqlam, loglam, lamexp, lambold;
VecDoub logfact;
Int swch;
Poissondev(Doub llambda, Ullong i) : Ran(i), lambda(llambda),
logfact(1024,-1.), lambold(-1.) {}
Constructor arguments are A and a random sequence seed.
Int dev() {
Return a Poisson deviate using the most recently set value of A.
Doub u,u2,v,v2,p,t,1lfac;

Int k;
if (lambda < 5.) { Will use product of uniforms method.
if (lambda != lambold) lamexp=exp(-lambda) ;
k = -1;
t=1.;
do {
++k;
t *= doub();
} while (t > lamexp);
} else { Will use ratio-of-uniforms method.

if (lambda != lambold) {
sqlam = sqrt(lambda);
loglam = log(lambda) ;

}
for (535) {
u = 0.64xdoub();
v = -0.68 + 1.28*doub();
if (lambda > 13.5) { Outer squeeze for fast rejection.
v2 = SQR(v);
if (v >= 0.) {if (v2 > 6.5%u*x(0.64-u)*(u+0.2)) continue;}
else {if (v2 > 9.6*%u*(0.66-u)*(u+0.07)) continue;}
}
k = Int(floor(sqlam*(v/u)+lambda+0.5));
if (k < 0) continue;
u2 = SQR(u);
if (lambda > 13.5) { Inner squeeze for fast acceptance
if (v >= 0.) {if (v2 < 15.2*%u2*(0.61-u)*(0.8-u)) break;}
else {if (v2 < 6.76*%u2x(0.62-u)*(1.4-u)) break;}
}
if (k < 1024) {
if (logfact[k] < 0.) logfact[k] = gammln(k+1.);
1fac = logfact[k];
} else 1fac = gammln(k+1.);
p = sqlam*exp(-lambda + k*loglam - 1lfac); Only when we must.
if (u2 < p) break;
}
}
lambold = lambda;
return k;

}

Int dev(Doub llambda) {

Reset A and then return a Poisson deviate.
lambda = llambda;
return dev();
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Figure 7.3.5. Ratio-of-uniforms method as applied to the generation of binomial deviates. Points are
chosen randomly in the (u#, v)-plane. The smooth curves are inner and outer squeezes. The jagged curves
correspond to various binomial distributions with n > 64 and np > 30. An evaluation of the binomial
probability is required only when the random point falls between the smooth curves.

In the regime A > 13.5, the above code uses about 3.3 uniform deviates per
output Poisson deviate and does 0.4 evaluations of the exact probability (costing an
exponential and, for large k, a call to gammln).

Poissondev is slightly faster if you draw many deviates with the same value A,
using the dev function with no arguments, than if you vary A on each call, using the
one-argument overloaded form of dev (which is provided for just that purpose). The
difference is just an extra exponential (A < 5) or square root and logarithm (1 > 5).
Note also the object’s table of previously computed log-factorials. If your A’s are as
large as ~ 103, you might want to make the table larger.

7.3.13 Binomial Deviates

The generation of binomial deviates k ~ Binomial(n, p) involves many of
the same ideas as for Poisson deviates. The distribution is again integer-valued, so
we use the same trick to convert it into a stepped continuous distribution. We can
always restrict attention to the case p < 0.5, since the distribution’s symmetries let
us trivially recover the case p > 0.5.

Whenrn > 64 and np > 30, we use the ratio-of-uniforms method, with squeezes
shown in Figure 7.3.5. The cost is about 3.2 uniform deviates, plus 0.4 evaluations
of the exact probability, per binomial deviate.

It would be foolish to waste much thought on the case where n > 64 and
np < 30, because it is so easy simply to tabulate the cdf, say for 0 < k < 64, and
then loop over k’s until the right one is found. (A bisection search, implemented
below, is even better.) With a cdf table of length 64, the neglected probability at the
end of the table is never larger than ~ 10720, (At 10° deviates per second, you could
run 3000 years before losing a deviate.)

What is left is the interesting case n < 64, which we will explore in some detail,
because it demonstrates the important concept of bit-parallel random comparison.

Analogous to the methods for gamma deviates with small integer a and for
Poisson deviates with small A, is this direct method for binomial deviates: Generate
n uniform deviates in U(0, 1). Count the number of them < p. Return the count as
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k ~ Binomial(n, p). Indeed this is essentially the definition of a binomial process!
The problem with the direct method is that it seems to require n uniform devi-
ates, even when the mean value of k is much smaller. Would you be surprised if we
told you that for n < 64 you can achieve the same goal with at most seven 64-bit
uniform deviates, on average? Here is how.
Expand p < 1 into its first 5 bits, plus a residual,

p=b127 b2 4 4 b2 4 p27° (7.3.37)

where each b; isOor 1,and 0 < p, < 1.

Now imagine that you have generated and stored 64 uniform U(0, 1) deviates,
and that the 64-bit word P displays just the first bit of each of the 64. Compare
each bit of P to b;. If the bits are the same, then we don’t yet know whether that
uniform deviate is less than or greater than p. But if the bits are different, then we
know that the generator is less than p (in the case that b; = 1) or greater than p
(in the case that b; = 0). If we keep a mask of “known” versus “unknown” cases,
we can do these comparisons in a bit-parallel manner by bitwise logical operations
(see code below to learn how). Now move on to the second bit, b,, in the same way.
At each stage we change half the remaining unknowns to knowns. After five stages
(for n = 64) there will be two remaining unknowns, on average, each of which we
finish off by generating a new uniform and comparing it to p,. (This requires a loop
through the 64 bits; but since C++ has no bitwise “popcount’” operation, we are stuck
doing such a loop anyway. If you can do popcounts, you may be better off just doing
more stages until the unknowns mask is zero.)

The trick is that the bits used in the five stages are not actually the leading five
bits of 64 generators, they are just five independent 64-bit random integers. The
number five was chosen because it minimizes 64 x 27/ + j, the expected number of
deviates needed.

So, the code for binomial deviates ends up with three separate methods: bit-
parallel direct, cdf lookup (by bisection), and squeezed ratio-of-uniforms.

struct Binomialdev : Ran {
Structure for binomial deviates.
Doub pp,p,pb,expnp,np,glnp,plog,pclog,sq;
Int n,swch;
Ullong uz,uo,unfin,diff,rltp;
Int pbits[5];
Doub cdf [64];
Doub logfact[1024];
Binomialdev(Int nn, Doub ppp, Ullong i) : Ran(i), pp(ppp), n(nn) {
Constructor arguments are n, p, and a random sequence seed.

Int j;
pb =p = (pp <= 0.5 7 pp : 1.0-pp);
if (n <= 64) { Will use bit-parallel direct method.
uz=0;
uo=0xffffffffffEfFFEFFIL;
rltp = 0;
for (j=0;j<5;j++) pbits[j]l = 1 & ((Int) (pb *= 2.));
pb -= floor(pb); Leading bits of p (above) and remaining
swch = 0; fraction.
} else if (n*p < 30.) { Will use precomputed cdf table.

cdf [0] = exp(n*log(1-p));

for (j=1;j<64;j++) cdf[jl = cdf[j-1] + exp(gammln(n+1.)
-gammln (j+1.)-gammln(n-j+1.)+j*log(p)+(n-j)*Llog(1l.-p));

swch = 1;

deviates.h
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} else { Will use ratio-of-uniforms method.
np = n*p;
glnp=gammln(n+1.);
plog=log(p);
pclog=log(l.-p);
sq=sqrt (npx(1.-p));
if (n < 1024) for (j=0;j<=n;j++) logfact[j] = gammln(j+1.);
swch = 2;
}
}
Int dev() {
Return a binomial deviate.
Int j,k,kl,km;
Doub y,u,v,u2,v2,b;
if (swch == 0) {

unfin = uo; Mark all bits as "unfinished.”

for (j=0;j<5;j++) { Compare with first five bits of p.
diff = unfin & (int64() " (pbits[j]? uwo : uz)); Mask of diff.
if (pbits[j]) rltp |= diff; Set bits to 1, meaning ran < p.
else rltp = rltp & ~diff; Set bits to 0, meaning ran > p.
unfin = unfin & ~diff; Update unfinished status.

}

k=0; Now we just count the events.

for (j=0;j<n;j++) {
if (unfin & 1) {if (doub() < pb) ++k;} Clean up unresolved cases,
else {if (rltp & 1) ++k;} or use bit answer.
unfin >>= 1;
rltp >>= 1;

}

} else if (swch == 1) { Use stored cdf.

y = doub();

kl = -1;

k = 64;

while (k-k1>1) {
km = (k1+k)/2;
if (y < cdf[km]) k = km;
else k1l = km;
}
} else { Use ratio-of-uniforms method.
for (5;) {
u = 0.645*doub();
v = -0.63 + 1.25%doub();
v2 = SQR(V);
Try squeeze for fast rejection:
if (v >= 0.) {if (v2 > 6.5%u*x(0.645-u)*(u+0.2)) continue;}
else {if (v2 > 8.4*u*x(0.645-u)*(u+0.1)) continue;}
k = Int(floor(sq*(v/u)+np+0.5));
if (k < 0) continue;
u2 = SQR(u);
Try squeeze for fast acceptance:
if (v >= 0.) {if (v2 < 12.25%u2%(0.615-u)*(0.92-u)) break;}
else {if (v2 < 7.84*u2*(0.615-u)*(1.2-u)) break;}
b = sg*exp(glnptk*plog+(n-k)*pclog  Only when we must.
- (n < 1024 7 logfact[k]+logfact[n-k]
: gammln(k+1.)+gammln(n-k+1.)));
if (u2 < b) break;
}
}
if (p !'= pp) k = n - k;
return k;
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If you are in a situation where you are drawing only one or a few deviates each
for many different values of n and/or p, you’ll need to restructure the code so that
n and p can be changed without creating a new instance of the object and without
reinitializing the underlying Ran generator.

7.3.14 When You Need Greater Speed

In particular situations you can cut some corners to gain greater speed. Here are
some suggestions.

o All of the algorithms in this section can be speeded up significantly by using
Rangl in §7.1 instead of Ran. We know of no reason not to do this. You can
gain some further speed by coding Ranq1’s algorithm inline, thus eliminating
the function calls.

e If you are using Poissondev or Binomialdev with large values of A or n,
then the above codes revert to calling gamm1n, which is slow. You can instead
increase the length of the stored tables.

e For Poisson deviates with A < 20, you may want to use a stored table of cdfs
combined with bisection to find the value of k. The code in Binomialdev
shows how to do this.

e [f your need is for binomial deviates with small n, you can easily modify the
code in Binomialdev to get multiple deviates (~ 64/n, in fact) from each
execution of the bit-parallel code.

e Do you need exact deviates, or would an approximation do? If your distribu-
tion of interest can be approximated by a normal distribution, consider sub-
stituting Normaldev, above, especially if you also code the uniform random
generation inline.

e If you sum exactly 12 uniform deviates U(0, 1) and then subtract 6, you get
a pretty good approximation of a normal deviate N (0, 1). This is definitely
slower then Normaldev (not to mention less accurate) on a general-purpose
CPU. However, there are reported to be some special-purpose signal process-
ing chips in which all the operations can be done with integer arithmetic and
in parallel.

See Gentle [3], Ripley [4], Devroye [6], Bratley [7], and Knuth [8] for many addi-
tional algorithms.
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7.4 Multivariate Normal Deviates

A multivariate random deviate of dimension M is a point in M -dimensional
space. Its coordinates are a vector, each of whose M components are random —
but not, in general, independently so, or identically distributed. The special case of
multivariate normal deviates is defined by the multidimensional Gaussian density
function

1

NG w2) = 0 557 der(z) 172

exp[—3(x—p)-Z7'-(x—p)]  (74.1)

where the parameter y is a vector that is the mean of the distribution, and the param-
eter X is a symmetrical, positive-definite matrix that is the distribution’s covariance.

There is a quite general way to construct a vector deviate x with a specified
covariance X and mean yu, starting with a vector y of independent random deviates
of zero mean and unit variance: First, use Cholesky decomposition (§2.9) to factor
Y into a left triangular matrix L times its transpose,

> =LL” (7.4.2)

This is always possible because X is positive-definite, and you need do it only once
for each distinct X of interest. Next, whenever you want a new deviate x, fill y with
independent deviates of unit variance and then construct

x =Ly +n (7.4.3)

The proof is straightforward, with angle brackets denoting expectation values:
Since the components y; are independent with unit variance, we have

yy)=1 (7.4.4)
where 1 is the identity matrix. Then,

(x—p)®(x—pn)) =((Ly) ® (Ly))
= (L(y ® y)LT) —L{y®y)LT (7.4.5)
=LLT =%

As general as this procedure is, it is, however, rarely useful for anything except
multivariate normal deviates. The reason is that while the components of x indeed
have the right mean and covariance structure, their detailed distribution is not any-
thing “nice.” The x;’s are linear combinations of the y;’s, and, in general, a linear
combination of random variables is distributed as a complicated convolution of their
individual distributions.
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For Gaussians, however, we do have “nice.” All linear combinations of normal
deviates are themselves normally distributed, and completely defined by their mean
and covariance structure. Thus, if we always fill the components of y with normal
deviates,

yi ~N(0,1) (7.4.6)

then the deviate (7.4.3) will be distributed according to equation (7.4.1).

Implementation is straightforward, since the Cholesky structure both accom-
plishes the decomposition and provides a method for doing the matrix multiplication
efficiently, taking advantage of L’s triangular structure. The generation of normal
deviates is inline for efficiency, identical to Normaldev in §7.3.

struct Multinormaldev : Ran {
Structure for multivariate normal deviates.
Int mm;
VecDoub mean;
MatDoub var;
Cholesky chol;
VecDoub spt, pt;

Multinormaldev(Ullong j, VecDoub &mmean, MatDoub &vvar)
Ran(j), mm(mmean.size()), mean(mmean), var(vvar), chol(var),
spt(mm), pt(mm) {
Constructor. Arguments are the random generator seed, the (vector) mean, and the (ma-
trix) covariance. Cholesky decomposition of the covariance is done here.
if (var.ncols() != mm || var.nrows() '= mm) throw("bad sizes");

}

VecDoub &dev() {
Return a multivariate normal deviate.
Int i;
Doub u,v,x,y,q;
for (i=0;i<mm;i++) { Fill a vector of independent normal deviates.
do {
doub () ;
1.7156*(doub()-0.5);
u - 0.449871;
abs(v) + 0.386595;
SQR(x) + y*(0.19600%y-0.25472%x) ;
} while (q > 0.27597
&& (q > 0.27846 || SQR(v) > -4.xlog(u)*SQR(u)));
spt[i] = v/u;

Q< XS E

}

chol.elmult (spt,pt); Apply equation (7.4.3).
for (i=0;i<mm;i++) {pt[i] += mean[i];}

return pt;

7.4.1 Decorrelating Multiple Random Variables

Although not directly related to the generation of random deviates, this is a
convenient place to point out how Cholesky decomposition can be used in the reverse
manner, namely to find linear combinations of correlated random variables that have
no correlation. In this application we are given a vector X whose components have a
known covariance ¥ and mean . Decomposing ¥ as in equation (7.4.2), we assert

multinormaldev.h
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that
y=L"1(x—p) (7.4.7)

has uncorrelated components, each of unit variance. Proof:

(y®y)=(L"'x—p)® L "x—n))
=L (x—p)®x—p)LT (7.4.8)
=L 'L =L 'LLTL7 T =1

Be aware that this linear combination is not unique. In fact, once you have
obtained a vector y of uncorrelated components, you can perform any rotation on it
and still have uncorrelated components. In particular, if K is an orthogonal matrix,
so that

K'K =KKT =1 (7.4.9)

then
(Ky)® Ky)) =K (y®y)K" =KK” =1 (7.4.10)

A common (though slower) alternative to Cholesky decomposition is to use the
Jacobi transformation (§11.1) to decompose X as

¥ = Vdiag(c?)VT (7.4.11)

where V is the orthogonal matrix of eigenvectors, and the o;’s are the standard devi-
ations of the (new) uncorrelated variables. Then Vdiag(o;) plays the role of L in the
proofs above.

Section §16.1.1 discusses some further applications of Cholesky decomposition
relating to multivariate random variables.

7.5 Linear Feedback Shift Registers

A linear feedback shift register (LFSR) consists of a state vector and a certain
kind of update rule. The state vector is often the set of bits in a 32- or 64-bit word,
but it can sometimes be a set of words in an array. To qualify as an LFSR, the update
rule must generate a linear combination of the bits (or words) in the current state,
and then shift that result onto one end of the state vector. The oldest value, at the
other end of the state vector, falls off and is gone. The output of an LFSR consists of
the sequence of new bits (or words) as they are shifted in.

For single bits, “linear” means arithmetic modulo 2, which is the same as using
the logical XOR operation for + and the logical AND operation for x. It is conve-
nient, however, to write equations using the arithmetic notation. So, for an LFSR of
length n, the words in the paragraph above translate to

n—1
/
a; = ( cjaj) + ay

a.=a;_1, I1=2,...,n
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| | || | | | | shift left

18 17 5 4 3 2 1 0

L shift left
(b)

Figure 7.5.1. Two related methods for obtaining random bits from a shift register and a primitive poly-
nomial modulo 2. (a) The contents of selected taps are combined by XOR (addition modulo 2), and the
result is shifted in from the right. This method is easiest to implement in hardware. (b) Selected bits are
modified by XOR with the leftmost bit, which is then shifted in from the right. This method is easiest to
implement in software.

Here a’ is the new state vector, derived from a by the update rule as shown. The
reason for singling out a, in the first line above is that its coefficient ¢, must be
= 1. Otherwise, the LFSR wouldn’t be of length 7, but only of length up to the last
nonzero coefficient in the ¢;’s.

There is also a reason for numbering the bits (henceforth we consider only the
case of a vector of bits, not of words) starting with 1 rather than the more comfortable
0. The mathematical properties of equation (7.5.1) derive from the properties of the
polynomials over the integers modulo 2. The polynomial associated with (7.5.1) is

P(x)=x"+cpx" '+t eax? +oax +1 (7.5.2)

where each of the ¢;’s has the value 0 or 1. So, cg, like ¢,, exists but is implicitly
= 1. There are several notations for describing specific polynomials like (7.5.2).
One is to simply list the values i for which ¢; is nonzero (by convention including ¢,
and ¢g). So the polynomial

B+ x24+x+1 (7.5.3)

1s abbreviated as
(18,5,2,1,0) (7.5.4)

Another, when a value of n (here 18), and ¢, = ¢g = 1, is assumed, is to construct a
“serial number” from the binary word ¢, —1¢,—1 - - - c2¢1 (by convention now exclud-
ing ¢, and c). For (7.5.3) this would be 19, that is, 2* + 2! + 2°. The nonzero ¢;’s
are often referred to as an LFSR’s raps.

Figure 7.5.1(a) illustrates how the polynomial (7.5.3) and (7.5.4) looks as an
update process on a register of 18 bits. Bit O is the temporary where a bit that is to
become the new bit 1 is computed.

The maximum period of an LFSR of n bits, before its output starts repeating, is
2" — 1. This is because the maximum number of distinct states is 2", but the special
vector with all bits zero simply repeats itself with period 1. If you pick a random
polynomial P (x), then the generator you construct will usually not be full-period. A
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fraction of polynomials over the integers modulo 2 are irreducible, meaning that they
can’t be factored. A fraction of the irreducible polynomials are primitive, meaning
that they generate maximum period LFSRs. For example, the polynomial x2 + 1 =
(x + 1)(x + 1) is not irreducible, so it is not primitive. (Remember to do arithmetic
on the coefficients mod 2.) The polynomial x* + x3 + x2 + x + 1 is irreducible,
but it turns out not to be primitive. The polynomial x* + x + 1 is both irreducible
and primitive.

Maximum period LFSRs are often used as sources of random bits in hardware
devices, because logic like that shown in Figure 7.5.1(a) requires only a few gates
and can be made to run extremely fast. There is not much of a niche for LFSRs
in software applications, because implementing equation (7.5.1) in code requires at
least two full-word logical operations for each nonzero ¢;, and all this work produces
a meager one bit of output. We call this “Method 1.” A better software approach,
“Method II,” is not obviously an LFSR at all, but it turns out to be mathematically
equivalent to one. It is shown in Figure 7.5.1(b). In code, this is implemented from
a primitive polynomial as follows:

Let maskp and maskn be two bit masks,

maskp = (0 - 0 Cp—1 Cp—2 -+ C2 Cl)
maskn= (0 --- 1 0 o -~ 0 0 (7:5.3)
Then, a word a is updated by
if (a & maskn) a = ((a "~ maskp) << 1) | 1;
P (15.6)

else a <<= 1;

You should work through the above prescription to see that it is identical to what
is shown in the figure. The output of this update (still only one bit) can be taken as
(a & maskn), or for that matter any fixed bit in a.

LFSRs (either Method I or Method II) are sometimes used to get random m-bit
words by concatenating the output bits from m consecutive updates (or, equivalently
for Method I, grabbing the low-order m bits of state after every m updates). This is
generally a bad idea, because the resulting words usually fail some standard statisti-
cal tests for randomness. It is especially a bad idea if m and 2" — 1 are not relatively
prime, in which case the method does not even give all m-bit words uniformly.

Next, we’ll develop a bit of theory to see the relation between Method I and
Method II, and this will lead us to a routine for testing whether any given polynomial
(expressed as a bit string of ¢;’s) is primitive. But, for now, if you only need a table
of some primitive polynomials go get going, one is provided on the next page.

Since the update rule (7.5.1) is linear, it can be written as a matrix M that multiplies

from the left a column vector of bits a to produce an updated state a’. (Note that the low-order
bits of a start at the top of the column vector.) One can readily read off

c1 ¢ ... Cp—2 cp—1 17
1 0o ... 0 0 0
0 1 ... 0 0 0
M=|. . ) ) . (7.5.7)
0O 0 1 0
L0 O 1 0_
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Some Primitive Polynomials Modulo 2 (after Watson [1])
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What are the conditions on M that give a full-period generator, and thereby prove that
the polynomial with coefficients ¢; is primitive? Evidently we must have

M@ =D -1 (7.5.8)

where 1 is the identity matrix. This states that the period, or some multiple of it, is 2”* — 1. But
the only possible such multiples are integers that divide 2" — 1. To rule these out, and ensure
a full period, we need only check that

M 21, g =Q"-1D/fk (7.5.9)

for every prime factor f; of 2 — 1. (This is exactly the logic behind the tests of the matrix T
that we described, but did not justify, in §7.1.2.)

It may at first sight seem daunting to compute the humongous powers of M in equations
(7.5.8) and (7.5.9). But, by the method of repeated squaring of M, each such power takes
only about n (a number like 32 or 64) matrix multiplies. And, since all the arithmetic is
done modulo 2, there is no possibility of overflow! The conditions (7.5.8) and (7.5.9) are in
fact an efficient way to test a polynomial for primitiveness. The following code implements
the test. Note that you must customize the constants in the constructor for your choice of n
(called N in the code), in particular the prime factors of 2" — 1. The case n = 32 is shown.
Other than that customization, the code as written is valid for n < 64. The input to the test
is the “serial number,” as defined above following equation (7.5.4), of the polynomial to be
tested. After declaring an instance of the Primpolytest structure, you can repeatedly call its
test () method to test multiple polynomials. To make Primpolytest entirely self-contained,
matrices are implemented as linear arrays, and the structure builds from scratch the few matrix
operations that it needs. This is inelegant, but effective.

struct Primpolytest {

Test polynomials over the integers mod 2 for primitiveness.
Int N, nfactors;
VecUllong factors;
VecInt t,a,p;

Primpolytest() : N(32), nfactors(5), factors(nfactors), t(NxN),
a(NxN) , p(N*xN) {
Constructor. The constants are specific to 32-bit LFSRs.
Ullong factordatal[5] = {3,5,17,257,65537};
for (Int i=0;i<nfactors;i++) factors[i] = factordatalil;

}
Int ispident() { Utility to test if p is the identity matrix
Int i,j;
for (i=0; i<N; i++) for (j=0; j<N; j++) {
if (i == j) { if (p[i*N+j] !'= 1) return 0; }
else {if (p[i*N+j] != 0) return 0; }
}
return 1;
}

void mattimeseq(VecInt &a, VecInt &b) {  Utility for a *= b on matrices a and b.
Int i,j,k,sum;
VecInt tmp (N*N);
for (i=0; i<N; i++) for (j=0; j<N; j++) {
sum = 0;
for (k=0; k<N; k++) sum += a[i*N+k] * b[k*N+j]l;
tmp [i*#N+j] = sum & 1;

}
for (k=0; k<N#N; k++) alk] = tmp[k];
}
void matpow(Ullong n) { Utility for matrix p = a"n by successive

Int k; squares.
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for (k=0; k<N*N; k++) pl[k] = 0;
for (k=0; k<N; k++) p[kxN+k] = 1;
while (1) {

if (n & 1) mattimeseq(p,a);

n >>= 1;

if (n == 0) break;

mattimeseq(a,a);

}

Int test(Ullong n) {
Main test routine. Returns 1 if the polynomial with serial number n (see text) is primitive,
0 otherwise.

Int i,k,j;

Ullong pow, tnml, nn = n;

tnml = ((Ullong)l << N) - 1;

if (n > (tnml >> 1)) throw("not a polynomial of degree N");

for (k=0; k<N*N; k++) t[k] = 0; Construct the update matrix in t
for (i=1; i<N; i++) t[i*N+(i-1)] = 1;
3=0;

while (nn) {
if (on & 1) t[j] = 1;

nn >>= 1;
jtts
}
t[N-1] = 1;
for (k=0; k<N*N; k++) alk] = t[k]; Test that t~tnml is the identity matrix
matpow (tnml) ;
if (ispident() != 1) return O;
for (i=0; i<nfactors; i++) { Test that the t to the required submulti-
pow = tnml/factors[i]; ple powers is not the identity matrix.
for (k=0; k<N*N; k++) al[k] = t[k];
matpow (pow) ;
if (ispident() == 1) return O;
}
return 1;
Y
};
Itis strai§htforward to generalize this method to n > 64 or to prime moduli p other than
2. If p" > 2% you’ll need a multiword binary representation of the integers p” — 1 and its

quotients with its prime factors, so that matpow can still find powers by successive squares.
Note that the computation time scales roughly as O(n%), so n = 64 is fast, while n = 1024
would be rather a long calculation.

Some random primitive polynomials for n = 32 bits (giving their serial numbers as dec-
imal values) are 2046052277, 1186898897, 221421833, 55334070, 1225518245, 216563424,
1532859853, 1735381519, 2049267032, 1363072601, and 130420448. Some random ones
for n = 64 bits are 926773948609480634, 3195735403700392248, 4407129700254524327,
256457582706860311, 5017679982664373343, and 1723461400905116882.

Given a matrix M that satisfies equations (7.5.8) and (7.5.9), there are some related
matrices that also satisfy those relations. An example is the inverse of M, which you can
easily verify as

01 0 ... 0 0
00 1 ... 0 0

M= : : (7.5.10)
00 0 ... 0 1
1 C1 c2 .. Cp—2 Cp—1

This is the update rule that backs up a state a’ to its predecessor state a. You can easily convert
(7.5.10) to a prescription analogous to equation (7.5.1) or to Figure 7.5.1(a).
Another matrix satisfying the relations that guarantee a full period is the transpose of the



386 Chapter 7. Random Numbers

inverse (or inverse of the transpose) of M,

0 0 00 1 -

10 00 ¢

r o1 .00 e
(M—l) =|. . S (7.5.11)

00 ... 1 0 ¢y

00 ... 0 1 cnd

Surprise! This is exactly Method II, as also shown in Figure 7.5.1(b). (Work it out.)

Even more specifically, the sequence of bits output by a Method II LFSR based on a
primitive polynomial P (x) is identical to the sequence output by a Method I LFSR that uses
the reciprocal polynomial x™ P(1/x). The proof is a bit beyond our scope, but it is essentially
because the matrix M and its transpose are both roots of the characteristic polynomial, equa-
tion (7.5.2), while the inverse matrix M~! and its transpose are both roots of the reciprocal
polynomial. The reciprocal polynomial, as you can easily check from the definition, just swaps
the positions of nonzero coefficients end-to-end. For example, the reciprocal polynomial of
equation (7.5.3) is (18,17, 16, 13, 1). If a polynomial is primitive, so is its reciprocal.

Try this experiment: Run a Method II generator for a while. Then take 7 consecutive
bits of its output (from its highest bit, say) and put them into a Method I shift register as
initialization (low bit the most recent one). Now step the two methods together, using the
reciprocal polynomial in the Method I. You’ll get identical output from the two generators.
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7.6 Hash Tables and Hash Memories

It’s a strange dream. You're in a kind of mailroom whose walls are lined with
numbered pigeonhole boxes. A man, Mr. Hacher, sits at a table. You are standing.
There is an in-basket mounted on the wall. Your job is to take letters from the in-
basket and sort them into the pigeonholes.

But how? The letters are addressed by name, while the pigeonholes are only
numbered. That is where Mr. Hacher comes in. You show him each letter, and he
immediately tells you its pigeonhole number. He always gives the same number for
the same name, while different names always get different numbers (and therefore
unique pigeonholes).

Over time, as the number of addressees grows, there are fewer and fewer empty
boxes until, finally, none at all. This is not a problem as long as letters arrive only
for existing boxholders. But one day, you spot a new name on an envelope. With
trepidation you put it in front of Mr. Hacher . .. and you wake up!
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Mr. Hacher and his table are a hash table. A hash table behaves as if it keeps
a running ledger of all the hash keys (the addressee names) that it has ever seen,
assigns a unique number to each, and is able to look through all the names for every
new query, either returning the same number as before (for a repeat key) or, for a
new key, assigning a new one. There is usually also an option to erase a key.

The goal in implementing a hash table is to make all these functions take only a
few computer operations each, not even O(log N). That is quite a trick, if you think
about it. Even if you somehow maintain an ordered or alphabetized list of keys, it
will still take O(log N') operations to find a place in the list, by bisection, say. The
big idea behind hash tables is the use of random number techniques (§7.1) to map
a hash key to a pseudo-random integer between 0 and N — 1, where N is the total
number of pigeonholes. Here we definitely want pseudo-random and not random
integers, because the same key must produce the same integer each time.

In first approximation, ideally much of the time, that initial pseudo-random in-
teger, called the output of the hash function, or (for short) the key’s hash, is what the
hash table puts out, i.e., the number given out by Mr. Hacher. However, it is possi-
ble that, by chance, two keys have the same hash; in fact this becomes increasingly
probable as the number of distinct keys approaches N, and a certainty when N 1is
exceeded (the pigeonhole principle). The implementation of a hash table therefore
requires a collision strategy that ensures that unique integers are returned, even for
(different) keys that have the same hash.

Many vendors’ implementations of the C++’s Standard Template Library (STL)
provide a hash table as the class hash_map. Unfortunately, at this writing, hash_map
is not a part of the actual STL standard, and the quality of vendor implementations
is also quite variable. We therefore here implement our own; thereby we can both
learn more about the principles involved and build in some specific features that will
be useful later in this book (for example §21.8 and §21.6).

7.6.1 Hash Function Object

By a hash function object we mean a structure that combines a hashing algo-
rithm (as in §7.1) with the “glue” needed to make a hash table. The object should
map an arbitrary key type keyT, which itself may be a structure containing multiple
data values, into (for our implementation) a pseudo-random 64-bit integer. All the
hash function object really needs to know about keyT is its length in bytes, that is,
sizeof (keyT), since it doesn’t care how those bytes are used, only that they are
part of the key to be hashed. We therefore give the hash function object a constructor
that tells it how many bytes to hash; and we let it access a key by a void pointer to
the key’s address. Thus the object can access those bytes any way it wants.

As a first example of a hash function object, let’s just put a wrapper around the
hash function algorithm of §7.1.4. This is quite efficient when sizeof (keyT) = 4
or 8.

struct Hashfnil {
Example of an object encapsulating a hash function for use by the class Hashmap.

Ranhash hasher; The actual hash function.

Int n; Size of key in bytes.

Hashfn1(Int nn) : n(nn) {} Constructor just saves key size.

Ullong fn(const void *key) { Function that returns hash from key.
Uint x*k;

Ullong *kk;

hash.h
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switch (n) {

case 4:

k = (Uint *)key;

return hasher.int64(xk); Return 64-bit hash of 32-bit key.
case 8:

kk = (Ullong *)key;\

return hasher.int64 (xkk); Return 64-bit hash of 64-bit key.
default:

throw("Hashfnl is for 4 or 8 byte keys only.");

};

(Since n is constant for the life of the object, it’s a bit inefficient to be testing it on
every call; you should edit out the unnecessary code when you know n in advance.)

More generally, a hash function object can be designed to work on arbitrary
sized keys by incorporating them into a final hash value a byte at a time. There is
a trade-off between speed and degree-of-randomness. Historically, hash functions
have favored speed, with simple incorporation rules like

ho = some fixed constant

7.6.1
hi = (mhi_yopk) mod22  (i=1...K) (7.6.1)

Here k; is the ith byte of the key (1 <i < K), m is a multiplier with popular values
that include 33, 63689, and 2'¢ 4- 26 — 1 (doing the multiplication by shifts and adds
in the first and third cases), and “op” is either addition or bitwise XOR. You get the
mod function for free when you use 32-bit unsigned integer arithmetic. However,
since 64-bit arithmetic is fast on modern machines, we think that the days of small
multipliers, or many operations changing only a few bits at a time, are over. We favor
hash functions that can pass good tests for randomness. (When you know a lot about
your keys, it is possible to design hash functions that are even better than random,
but that is beyond our scope here.)

A hash function object may also do some initialization (of tables, etc.) when it
is created. Unlike a random number generator, however, it may not store any history-
dependent state between calls, because it must return the same hash for the same key
every time. Here is an example of a self-contained hash function object for keys of
any length. This is the hash function object that we will use below.

struct Hashfn2 {

Another example of an object encapsulating a hash function, allowing arbitrary fixed key sizes

or variable-length null terminated strings. The hash function algorithm is self-contained.
static Ullong hashfn_tab[256] ;

Ullong h;
Int n; Size of key in bytes, when fixed size.
Hashfn2(Int nn) : n(an) {
if (n ==1) n = 0; Null terminated string key signaled by n = 0
h = 0x544B2FBACAAF1684LL; or 1.
for (Int j=0; j<256; j++) { Length 256 lookup table is initialized with
for (Int i=0; i<31; i++) { values from a 64-bit Marsaglia generator
h=(th> 7) " h; stepped 31 times between each.
h = (h << 11) ~ h;
h = (h > 10) ~ h;
}

hashfn_tab[j] = h;
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Ullong fn(const void xkey) { Function that returns hash from key.
Int j;
char *k = (char *)key; Cast the key pointer to char pointer.
h=0xBB40E64DA205B064LL;
j=0;
while (n ? j++ < n : *k) { Fixed length or else until null.
h = (h * 7664345821815920749LL) ~ hashfn_tabl[(unsigned char) (*k)];
k++;
}
return h;
}
};
Ullong Hashfn2::hashfn_tab[256]; Defines storage for the lookup table.

The method used is basically equation (7.6.1), but (i) with a large constant that
is known to be a good multiplier for a linear congruential random number generator
mod 2%4, and, more importantly, (ii) a table lookup that substitutes a random (but
fixed) 64-bit value for every byte value in 0. ..255. Note also the tweak that allows
Hashfn2 to be used either for fixed length key types (call constructor withn > 1) or
with null terminated byte arrays of variable length (call constructor withn = O or 1).

7.6.2 Hash Table

By hash table we mean an object with the functionality of Mr. Hacher (and his
table) in the dream, namely to turn arbitrary keys into unique integers in a specified
range. Let’s dive right in. In outline, the Hashtable object is

template<class keyT, class hfnT> struct Hashtable {
Instantiate a hash table, with methods for maintaining a one-to-one correspondence between
arbitrary keys and unique integers in a specified range.
Int nhash, nmax, nn, ng;
VecInt htable, next, garbg;
VecUllong thehash;
hfnT hash; An instance of a hash function object.
Hashtable(Int nh, Int nv);
Constructor. Arguments are size of hash table and max number of stored elements (keys).

Int iget(const keyT &key); Return integer for a previously set key.
Int iset(const keyT &key); Return unique integer for a new key.
Int ierase(const keyT &key); Erase a key.

Int ireserve(); Reserve an integer (with no key).

Int irelinquish(Int k); Un-reserve an integer.

};

template<class keyT, class hfnT>
Hashtable<keyT,hfnT>: :Hashtable(Int nh, Int nv):
Constructor. Set nhash, the size of the hash table, and nmax, the maximum number of elements
(keys) that can be accommodated. Allocate arrays appropriately.
hash(sizeof (keyT)), nhash(nh), nmax(nv), nn(0), ng(0),
htable(nh), next(nv), garbg(nv), thehash(nv) {
for (Int j=0; j<nh; j++) { htable[j]l = -1; } Signifies empty.

A Hashtable object is templated by two class names: the class of the key
(which may be as simple as int or as complicated as a multiply derived class) and
the class of the hash function object (e.g., Hashfnl or Hashfn?2, above). Note how
the hash function object is automatically created using the size of keyT, so the user
is not responsible for knowing this value. If you are going to use variable length, null

hash.h
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terminated byte arrays as keys, then the type of keyT is char, not charx; see §7.6.5
for an example.

The hash table object is created from two integer parameters. The most impor-
tant one is nm, the maximum number of objects that can be stored — in the dream,
the number of pigeonholes in the room. For now, suppose that the second parameter,
nh, has the same value as nm.

The overall scheme is to convert arbitrary keys into integers in the range O . . .
nh-1 that index into the array htable, by taking the output of the hash function
modulo nh. That array’s indexed element contains either —1, meaning “empty,” or
else an index in the range 0 ...nm-1 that points into the arrays thehash and next.
(For a computer science flavor one could do this with list elements linked by pointers,
but in the spirit of numerical computation, we will use arrays; both ways are about
equally efficient.)

An element in thehash contains the 64-bit hash of whatever key was previously
assigned to that index. We will take the identity of two hashes as being positive proof
that their keys were identical. Of course this is not really true. There is a probability
of 276% ~ 5 x 1072° of two keys giving identical hashes by chance. To guarantee
error-free performance, a hash table must in fact store the actual key, not just the
hash; but for our purposes we will accept the very small chance that two elements
might get confused. (Don’t use these routines if you are typically storing more than
a billion elements in a single hash table. But you already knew that!)

This 10729 coincidence is nor what is meant by hash collision. Rather, hash
collisions occur when two hashes yield the same value modulo nh, so that they point
to the same element in htable. That is not at all unusual, and we must provide for
handling it. Elements in the array next contain values that index back into thehash
and next, i.e., form a linked list. So, when two or more keys have landed on the
same value i, 0 < i < nh, and we want to retrieve a particular one of them, it will
either be in the location thehash[i], or else in the (hopefully short) list that starts
there and is linked by next[i], next[next[i]], and so forth.

We can now say more about the value that should be initially specified for the
parameter nh. For a full table with all nm values assigned, the linked lists attached
to each element of htable have lengths that are Poisson distributed with a mean
A = nm/nh. Thus, large A (nh too small) implies a lot of list traversal, while small
A (nh too large) implies wasted space in htable. Conventional wisdom is to choose
A ~ 0.75, in which case (assuming a good hash function) 47% of htable will be
empty, 67% of the nonempty elements will have lists of length one (i.e., you get the
correct key on the first try), and the mean number of indirections (steps in traversing
the next pointers) is 0.42. For A = 1, that is, nh = nm, the values are 37% table
empty, 58% first try hits, and 0.58 mean indirections. So, in this general range, any
choice is basically fine. The general formulas are

empty fraction = P3(0) = e~*
frst try hits = Py (1)/[1 — Py (0)] = -
rst try hits = — =
Y * A [ —e* (7.6.2)
0o . . —A
— 1P -1+
mean indirections = Z U )1 (j) = ¢ —:
Z 1-P(0) 1 —e

where P, (j) is the Poisson probability function.
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Now to the implementations within Hashtable. The simplest to understand is
the “get” function, which returns an index value only if the key was previously “set,”
and returns —1 (by convention) if it was not. Our data structure is designed to make
this as fast as possible.

template<class keyT, class hfnT> hash.h
Int Hashtable<keyT,hfnT>::iget(const keyT &key) {

Returns integer in 0. .nmax-1 corresponding to key, or —1 if no such key was previously stored.
Int j,k;

Ullong pp = hash.fn(&key);
j = (Int)(pp % nhash);

Get 64-bit hash
and map it into the hash table.

for (k = htable[jl; k != -1; k = next[k]) { Traverse linked list until an ex-
if (thehash([k] == pp) { act match is found.
return k;
}
}

return -1; Key was not previously stored.

A language subtlety to be noted is that iget receives key as a const reference, and
then passes its address, namely &key, to the hash function object. C++ allows this,
because the hash function object’s void pointer argument is itself declared as const.

The routine that “sets” a key is slightly more complicated. If the key has pre-
viously been set, we want to return the same value as the first time. If it hasn’t been
set, we initialize the necessary links for the future.

template<class keyT, class hfnT> hash.h
Int Hashtable<keyT,hfnT>::iset(const keyT &key) {
Returns integer in 0. .nmax-1 that will henceforth correspond to key. If key was previously set,
return the same integer as before.
Int j,k,kprev;
Ullong pp = hash.fn(&key);
j = (Int)(pp % nhash);
if (htable[j] == -1) {
k = ng ? garbg[--ng] : nn++
htable[j] = k;

Get 64-bit hash

and map it into the hash table.

Key not in table. Find a free integer, either
; new or previously erased.

} else { Key might be in table. Traverse list.
for (k = htable[j]; k != -1; k = next[k]) {
if (thehash[k] == pp) {
return k; Yes. Return previous value.
}
kprev = k;
}

k = ng 7 garbg[--ngl : nn++
next [kprev] = k;

; No. Get new integer.

3
if (k >= nmax) throw("storing too many values");

thehash[k] = pp; Store the key at the new or previous integer.
next[k] = -1;
return k;

A word here about garbage collection. When a key is erased (by the routine
immediately below), we want to make its integer available to future “sets,” so that
nmax keys can always be stored. This is very easy to implement if we allocate a
garbage array (garbg) and use it as a last-in first-out stack of available integers. The
set routine above always checks this stack when it needs a new integer. (By the
way, had we designed Hashtable with list elements linked by pointers, instead of
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arrays, efficient garbage collection would have been more difficult to implement; see
Stroustrop [1].)

template<class keyT, class hfnT>

Int Hashtable<keyT,hfnT>::ierase(const keyT &key) {

Erase a key, returning the integer in 0. .nmax-1 erased, or —1 if the key was not previously set.
Int j,k,kprev;
Ullong pp = hash.fn(&key);
j = (Int) (pp % nhash);

if (htable[j] == -1) return -1; Key not previously set.
kprev = -1;
for (k = htable[jl; k != -1; k = next[k]) {
if (thehash[k] == pp) { Found key. Splice linked list around it.
if (kprev == -1) htable[j] = next[k];
else next[kprev] = next[k];
garbg[ng++] = k; Add k to garbage stack as an available integer.
return k;
}
kprev = k;
}
return -1; Key not previously set.

Finally, Hashtable has routines that reserve and relinquish integers in the range
0 to nmax. When an integer is reserved, it is guaranteed not to be used by the hash
table. Below, we’ll use this feature as a convenience in constructing a hash memory
that can store more than one element under a single key.

template<class keyT, class hfnT>
Int Hashtable<keyT,hfnT>::ireserve() {
Reserve an integer in 0. .nmax-1 so that it will not be used by set (), and return its value.
Int k = ng ? garbg[--ng] : nn++ ;
if (k >= nmax) throw("reserving too many values");
next[k] = -2;
return k;

}

template<class keyT, class hfnT>
Int Hashtable<keyT,hfnT>::irelinquish(Int k) {
Return to the pool an index previously reserved by reserve(), and return it, or return —1 if it
was not previously reserved.
if (next[k] !'= -2) {return -1;}
garbg[ng++] = k;
return k;

7.6.3 Hash Memory

The Hashtable class, above, implements Mr. Hacher’s task. Building on it, we
next implement your job in the dream, namely to do the actual storage and retrieval
of arbitrary objects by arbitrary keys. This is termed a hash memory.

When you store into an ordinary computer memory, the value of anything previ-
ously stored there is overwritten. If you want your hash memory to behave the same
way, then a hash memory class, Hash, derived from Hashtable, is almost trivial to
write. The class is templated by three structure types: keyT for the key type; e1T for
the type of the element that is stored in the hash memory; and hfnT, as before, for
the object that encapsulates the hash function of your choice.
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template<class keyT, class elT, class hfnT>
struct Hash : Hashtable<keyT, hfnT> {
Extend the Hashtable class with storage for elements of type elT, and provide methods for
storing, retrieving. and erasing elements. key is passed by address in all methods.
using Hashtable<keyT,hfnT>::iget;
using Hashtable<keyT,hfnT>::iset;
using Hashtable<keyT,hfnT>::ierase;
vector<elT> els;

Hash(Int nh, Int nm) : Hashtable<keyT, hfnT>(nh, nm), els(am) {}
Same constructor syntax as Hashtable.

void set(const keyT &key, const elT &el)
Store an element el.
{els[iset(key)] = el;}

Int get(const keyT &key, elT &el) {
Retrieve an element into el. Returns 0 if no element is stored under key, or 1 for success.

Int 11 = iget(key);
if (11 < 0) return O;
el = els[11];

return 1;

}

elT& operator[] (const keyT &key) {
Store or retrieve an element using subscript notation for its key. Returns a reference that
can be used as an I-value.
Int 11 = iget(key);
if (11 < 0) {
11 = iset(key);
els[11] = elTQ;
}
return els[11];

}

Int count(const keyT &key) {

Return the number of elements stored under key, that is, either 0 or 1.
Int 11 = iget(key);
return (11 < 0 72 0 : 1);

}

Int erase(const keyT &key) {
Erase an element. Returns 1 for success, or 0 if no element is stored under key.
return (ierase(key) < 0 7 0 : 1);
}
3

The operator[] method, above, is intended for two distinct uses. First, it
implements an intuitive syntax for storing and retrieving elements, e.g.,

myhash [ some-key ] = rhs
for storing, and
lhs = myhash [ some-key ]

for retrieving. Note, however, that a small inefficiency is introduced, namely a su-
perfluous call to get when an element is set for the first time. Second, the method
returns a non-const reference that cannot only be used as an I-value, but also be
pointed to, as in

hash.h
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some-pointer = &myhash [ some-key ]

Now the stored element can be referenced through the pointer, possibly multiple
times, without any additional overhead of key lookup. This can be an important
gain in efficiency in some applications. Of course you can also use the set and get
methods directly.

7.6.4 Hash Multimap Memory

Next turn to the case where you want to be able to store more than one element
under the same key. If ordinary computer memory behaved this way, you could set
a variable to a series of values and have it remember all of them! Obviously this is
a somewhat more complicated an extension of Hashtable than was Hash. We will
call it Mhash, where the M stands for “multivalued” or “multimap.” One requirement
is to provide a convenient syntax for retrieving multiple values of a single key, one at
a time. We do this by the functions getinit and getnext. Also, in Mhash, below,
nmax now means the maximum number of values that can be stored, not the number
of keys, which may in general be smaller.

The code, with comments, should be understandable without much additional
explanation. We use the reserve and relinquish features of Hashtable so as to
have a common numbering system for all stored elements, both the first instance of
a key (which Hashtable must know about) and subsequent instances of the same
key (which are invisible to Hashtable but managed by Mhash through the linked
list nextsis).

template<class keyT, class elT, class hfnT>
struct Mhash : Hashtable<keyT,hfnT> {
Extend the Hashtable class with storage for elements of type elT, allowing more than one
element to be stored under a single key.
using Hashtable<keyT,hfnT>::iget;
using Hashtable<keyT,hfnT>::iset;
using Hashtable<keyT,hfnT>::ierase;
using Hashtable<keyT,hfnT>::ireserve;
using Hashtable<keyT,hfnT>::irelinquish;
vector<elT> els;

VecInt nextsis; Links to next sister element under a single key.
Int nextget;

Mhash(Int nh, Int nm); Same constructor syntax as Hashtable.

Int store(const keyT &key, const elT &el); Store an element under key.

Int erase(const keyT &key, const elT &el); Erase a specified element under key.
Int count(const keyT &key); Count elements stored under key.

Int getinit(const keyT &key) ; Prepare to retrieve elements from key.

Int getnext(elT &el); Retrieve next element specified by getinit.

};

template<class keyT, class elT, class hfnT>

Mhash<keyT,elT,hfnT>: :Mhash(Int nh, Int nm)
: Hashtable<keyT, hfnT>(nh, nm), nextget(-1), els(nm), nextsis(am) {
for (Int j=0; j<nm; j++) {nextsis[j] = -2;} Initialize to "empty”.

}

template<class keyT, class elT, class hfnT>

Int Mhash<keyT,elT,hfnT>::store(const keyT &key, const elT &el) {

Store an element el under key. Return index in 0. .nmax-1, giving the storage location utilized.
Int j,k;
j = iset(key); Find root index for this key.
if (nextsis[j] == -2) { It is the first object with this key.
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els[j] = el;
nextsis[j] = -1; —1 means it is the terminal element.
return j;
} else {
while (nextsis[j] != -1) {j = nextsis[j];}  Traverse the tree.
k = ireserve(); Get a new index and link it into the list.
els[k] = el;
nextsis[j] = k;
nextsis[k] = -1;
return k;

}

template<class keyT, class elT, class hfnT>
Int Mhash<keyT,elT,hfnT>::erase(const keyT &key, const elT &el) {
Erase an element el previously stored under key. Return 1 for success, or 0 if no matching
element is found. Note: The == operation must be defined for the type elT.
Int j = -1,kp = -1,kpp = -1;
Int k = iget(key);
while (k >= 0) {

if (j < 0 && el == els[k]) j = k; Save index of matching el as j.
kpp = kp;
kp = k;
k=nextsis[k];
}
if (j < 0) return 0; No matching el found.
if (kpp < 0) { The element el was unique under key.
ierase(key) ;
nextsis[j] = -2;
} else { Patch the list.
if (j != kp) els[j] = elslkp]; Overwrite j with the terminal element
nextsis[kpp] = -1; and then shorten the list.
irelinquish(kp);
nextsis[kp] = -2;
¥
return 1; Success.

}

template<class keyT, class elT, class hfnT>
Int Mhash<keyT,elT,hfnT>::count(const keyT &key) {
Return the number of elements stored under key, 0 if none.
Int next, n = 1;
if ((next = iget(key)) < 0) return 0;
while ((next = nextsis[next]) >= 0) {n++;}
return n;

}

template<class keyT, class elT, class hfnT>
Int Mhash<keyT,elT,hfnT>::getinit(const keyT &key) {
Initialize nextget so that it points to the first element stored under key. Return 1 for success,
or 0 if no such element.
nextget = iget(key);
return ((nextget < 0)7 0 : 1);
}

template<class keyT, class elT, class hfnT>
Int Mhash<keyT,elT,hfnT>::getnext(elT &el) {
If nextget points validly, copy its element into el, update nextget to the next element with
the same key, and return 1. Otherwise, do not modify el, and return 0.
if (nextget < 0) {return 0;}
el = els[nextget];
nextget = nextsis[nextget];
return 1;
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The methods getinit and getnext are designed to be used in code like this,
where myhash is a variable of type Mhash:

Retrieve all elements el stored under a single key and do something with them.
if (myhash.getinit(&key)) {
while (myhash.getnext(el)) {
Here use the returned element el.

}

7.6.5 Usage Examples

Having exposed in such detail the inner workings of the Hash and Mhash classes,
we may have left the impression that these are difficult to use. Quite the contrary.
Here’s a piece code that declares a hash memory for integers, and then stores the
birth years of some personages:

Hash<string,Int,Hashfn2> year(1000,1000) ;

year[string("Marie Antoinette")] = 1755;

year [string("Ludwig van Beethoven")] = 1770;

year [string("Charles Babbage")] = 1791;
As declared, year can hold up to 1000 entries. We use the C++ string class as the
key type. If we want to know how old Marie was when Charles was born, we can
write,
Int diff = year[string("Charles Babbage")] - year[string("Marie Antoinette")];
cout << diff << ’\n’;
which prints “36”.

Instead of using the C++ string class, you can, if you must, use null terminated

C strings as keys, like this:

Hash<char, Int,Hashfn2> yearc(1000,1000) ;

yearc["Charles Babbage"[0]] = 1791;
This works because Hashfn2 has a special tweak, mentioned above, for key types
that are apparently one byte long. Note the required use of [0] to send only the first
byte of the C string; but that byte is passed by address, so Hashfn2 knows where to
find the rest of the string. (The syntax yearc [*"Charles Babbage"] is equivalent,
also sending the first byte.)

Suppose we want to go the other direction, namely store the names of people

into a hash memory indexed by birth year. Since more than one person may be born
in a single year, we want to use a hash multimap memory, Mhash:

Mhash<Int,string,Hashfn2> person(1000,1000) ;

person.store(1775, string("Jane Austen"));
person.store(1791, string("Charles Babbage"));
person.store(1767, string("Andrew Jackson"));
person.store(1791, string("James Buchanan"));
person.store(1767, string("John Quincy Adams"));
person.store(1770, string("Ludwig van Beethoven"));
person.store(1791, string("Samuel Morse"));
person.store(1755, string("Marie Antoinette"));
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It doesn’t matter, of course, the order in which we put the names into the hash. Here
is a piece of code to loop over years, printing the people born in that year:
string str;
for (Int i=1750;i<1800;i++) {
if (person.getinit(i)) {
cout << ’\n’ << "born in " << i << ":\n";
while (person.getnext(str)) cout << str.data() << ’\n’;

}
which gives as output

born in 1755:
Marie Antoinette

born in 1767:
Andrew Jackson
John Quincy Adams

born in 1770:
Ludwig van Beethoven

born in 1775:
Jane Austen

born in 1791:
Charles Babbage
James Buchanan
Samuel Morse

Notice that we could not have used null terminated C strings in this example, because
C++ does not regard them as first-class objects that can be stored as elements of a
vector. When you are using Hash or Mhash with strings, you will usually be better
off using the C++ string class.

In §21.2 and §21.8 we will make extensive use of both the Hash and Mhash
classes and almost all their member functions; look there for further usage examples.

By the way, Mr. Hacher’s name is from the French hacher, meaning “to mince
or hash.”

CITED REFERENCES AND FURTHER READING:
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7.7 Simple Monte Carlo Integration

Inspirations for numerical methods can spring from unlikely sources. “Splines”
first were flexible strips of wood used by draftsmen. “Simulated annealing” (we shall
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Figure 7.7.1. Monte Carlo integration of a function f(x, y) in a region W. Random points are chosen
within an area V' that includes W and that can easily be sampled uniformly. Of the three possible Vs
shown, V7 is a poor choice because W occupies only a small fraction of its area, while V> and V3 are
better choices.

see in §10.12) is rooted in a thermodynamic analogy. And who does not feel at least
a faint echo of glamor in the name “Monte Carlo method”?

Suppose that we pick N random points, uniformly distributed in a multidimen-
sional volume V. Call them xo, ..., xy_1. Then the basic theorem of Monte Carlo
integration estimates the integral of a function f over the multidimensional volume,

2
/demV(f):i:V W (7.7.1)

Here the angle brackets denote taking the arithmetic mean over the N sample points,
1 N-1 1 N—-1

(=5 2 fe) () =5 2 200 (7.7.2)
i=0 i=0

The “plus-or-minus” term in (7.7.1) is a one standard deviation error estimate for
the integral, not a rigorous bound; further, there is no guarantee that the error is
distributed as a Gaussian, so the error term should be taken only as a rough indication
of probable error.

Suppose that you want to integrate a function g over a region W that is not easy
to sample randomly. For example, W might have a very complicated shape. No
problem. Just find a region V' that includes W and that can easily be sampled, and
then define f to be equal to g for points in W and equal to zero for points outside of
W (but still inside the sampled V). You want to try to make V' enclose W as closely
as possible, because the zero values of f will increase the error estimate term of
(7.7.1). And well they should: Points chosen outside of W have no information
content, so the effective value of N, the number of points, is reduced. The error
estimate in (7.7.1) takes this into account.

Figure 7.7.1 shows three possible regions V' that might be used to sample a
complicated region W. The first, V7, is obviously a poor choice. A good choice, V5,



7.7 Simple Monte Carlo Integration 399

can be sampled by picking a pair of uniform deviates (s, ¢) and then mapping them
into (x, y) by a linear transformation. Another good choice, V3, can be sampled by,
first, using a uniform deviate to choose between the left and right rectangular subre-
gions (in proportion to their respective areas!) and, then, using two more deviates to
pick a point inside the chosen rectangle.

Let’s create an object that embodies the general scheme described. (We will
discuss the implementing code later.) The general idea is to create an MCintegrate
object by providing (as constructor arguments) the following items:

e a vector x1o of lower limits of the coordinates for the rectangular box to be
sampled

e a vector xhi of upper limits of the coordinates for the rectangular box to be
sampled

e a vector-valued function funcs that returns as its components one or more
functions that we want to integrate simultaneously

e aboolean function that returns whether a point is in the (possibly complicated)
region W that we want to integrate; the point will already be within the region
V defined by x1o and xhi

e a mapping function to be discussed below, or NULL if there is no mapping
function or if your attention span is too short

e a seed for the random number generator

The object MCintegrate has this structure.

struct MCintegrate {

Object for Monte Carlo integration of one or more functions in an ndim-dimensional region.
Int ndim,nfun,n; Number of dimensions, functions, and points sampled.
VecDoub ff,fferr; Answers: The integrals and their standard errors.
VecDoub xlo,xhi,x,xx,fn,sf,sferr;

Doub vol; Volume of the box V.

VecDoub (*funcsp) (const VecDoub &) ; Pointers to the user-supplied functions.
VecDoub (*xmapp) (const VecDoub &) ;

Bool (*inregionp) (const VecDoub &) ;

Ran ran; Random number generator.

MCintegrate(const VecDoub &xlow, const VecDoub &xhigh,

VecDoub funcs(const VecDoub &), Bool inregion(const VecDoub &),
VecDoub xmap(const VecDoub &), Int ranseed);

Constructor. The arguments are in the order described in the itemized list above.

void step(Int nstep);
Sample an additional nstep points, accumulating the various sums.

void calcanswers();
Calculate answers £f and fferr using the current sums.

The member function step adds sample points, the number of which is given
by its argument. The member function calcanswers updates the vectors £f and
fferr, which contain respectively the estimated Monte Carlo integrals of the func-
tions and the errors on these estimates. You can examine these values, and then, if
you want, call step and calcanswers again to further reduce the errors.

A worked example will show the underlying simplicity of the method. Suppose
that we want to find the weight and the position of the center of mass of an object of

mcintegrate.h
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Figure 7.7.2. Example of Monte Carlo integration (see text). The region of interest is a piece of a torus,
bounded by the intersection of two planes. The limits of integration of the region cannot easily be written
in analytically closed form, so Monte Carlo is a useful technique.

complicated shape, namely the intersection of a torus with the faces of a large box.
In particular, let the object be defined by the three simultaneous conditions:

2
22+ (\/x2 + y2 — 3) <1 (7.7.3)
(torus centered on the origin with major radius = 3, minor radius = 1)
x>1 y>-3 (7.7.4)

(two faces of the box; see Figure 7.7.2). Suppose for the moment that the object has
a constant density p = 1.

We want to estimate the following integrals over the interior of the complicated
object:

/pdxdydz [x,odxdydz [y,odxdydz /Z,odxdydz
(7.7.5)
The coordinates of the center of mass will be the ratio of the latter three integrals
(linear moments) to the first one (the weight).
To use the MCintegrate object, we first write functions that describe the inte-
grands and the region of integration W inside the box V.
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VecDoub torusfuncs(const VecDoub &x) { mcintegrate.h
Return the integrands in equation (7.7.5), with p = 1.

Doub den = 1.;

VecDoub f(4);

£f[0] = den;

for (Int i=1;i<4;i++) f[i] = x[i-1]*den;

return f;

}

Bool torusregion(const VecDoub &x) {
Return the inequality (7.7.3).

return SQR(x[2])+SQR(sqrt(SQR(x[0])+SQR(x[1]1))-3.) <= 1.;
}

The code to actually do the integration is now quite simple,

VecDoub xlo(3), xhi(3);

x1lo[0] 1.; xhi[0] = 4.;

xlo[1] = -3.; xhi[1] = 4.;

xlo[2] -1.; xhi[2] = 1.;

MCintegrate mymc(xlo,xhi,torusfuncs,torusregion,NULL,10201);
mymc . step(1000000) ;

mymc . calcanswers () ;

Here we’ve specified the box V' by x1o and xhi, created an instance of MCintegrate,
sampled a million times, and updated the answers mymc . £f and mymc . fferr, which
can be accessed for printing or another use.

7.7.1 Change of Variables

A change of variable can often be extremely worthwhile in Monte Carlo inte-
gration. Suppose, for example, that we want to evaluate the same integrals, but for a
piece of torus whose density is a strong function of z, in fact varying according to

p(x.y.z) = e* (7.7.6)

One way to do this is, in torusfuncs, simply to replace the statement
Doub den = 1.;

by the statement
Doub den = exp(5.*x[2]);

This will work, but it is not the best way to proceed. Since (7.7.6) falls so rapidly
to zero as z decreases (down to its lower limit —1), most sampled points contribute
almost nothing to the sum of the weight or moments. These points are effectively
wasted, almost as badly as those that fall outside of the region W. A change of
variable, exactly as in the transformation methods of §7.3, solves this problem. Let

ds = e>?dz so that s = %esz, z= %ln(Ss) (7.7.7)

Then pdz = ds, and the limits —1 < z < 1 become .00135 < 5 < 29.682.

The MCintegrate object knows that you might want to do this. If it sees an
argument xmap that is not NULL, it will assume that the sampling region defined by
x1lo and xhi is not in physical space, but rather needs to be mapped into physical
space before either the functions or the region boundary are calculated. Thus, to ef-
fect our change of variable, we don’t need to modify torusfuncs or torusregion,
but we do need to modify x1o and xhi, as well as supply the following function for
the argument xmap:
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VecDoub torusmap(const VecDoub &s) {
Return the mapping from s to z defined by the last equation in (7.7.7), mapping the other
coordinates by the identity map.

VecDoub xx(s);

xx[2] = 0.2xlog(5.*s[2]);

return xx;

Code for the actual integration now looks like this:

VecDoub slo(3), shi(3);

slo[0] = 1.; shi[0] = 4.;

slo[1] = -3.; shi[1l] = 4.;

slo[2] = 0.2%exp(5.*(-1.)); shil[2] = 0.2%exp(5.%(1.));
MCintegrate mymc2(slo,shi,torusfuncs,torusregion,torusmap,10201);
mymc2.step (1000000) ;

mymc2.calcanswers() ;

If you think for a minute, you will realize that equation (7.7.7) was useful only
because the part of the integrand that we wanted to eliminate (e>?) was both inte-
grable analytically and had an integral that could be analytically inverted. (Compare
§7.3.2.) In general these properties will not hold. Question: What then? Answer:
Pull out of the integrand the “best” factor that can be integrated and inverted. The
criterion for “best” is to try to reduce the remaining integrand to a function that is as
close as possible to constant.

The limiting case is instructive: If you manage to make the integrand f exactly
constant, and if the region V', of known volume, exactly encloses the desired region
W, then the average of f that you compute will be exactly its constant value, and
the error estimate in equation (7.7.1) will exactly vanish. You will, in fact, have done
the integral exactly, and the Monte Carlo numerical evaluations are superfluous. So,
backing off from the extreme limiting case, to the extent that you are able to make f
approximately constant by change of variable, and fo the extent that you can sample a
region only slightly larger than W, you will increase the accuracy of the Monte Carlo
integral. This technique is generically called reduction of variance in the literature.

The fundamental disadvantage of simple Monte Carlo integration is that its ac-
curacy increases only as the square root of N, the number of sampled points. If
your accuracy requirements are modest, or if your computer is large, then the tech-
nique is highly recommended as one of great generality. In §7.8 and §7.9 we will see
that there are techniques available for “breaking the square root of N barrier” and
achieving, at least in some cases, higher accuracy with fewer function evaluations.

There should be nothing surprising in the implementation of MCintegrate.
The constructor stores pointers to the user functions, makes an otherwise superfluous
call to funcs just to find out the size of returned vector, and then sizes the sum and
answer vectors accordingly. The step and calcanswer methods implement exactly
equations (7.7.1) and (7.7.2).

MCintegrate: :MCintegrate(const VecDoub &xlow, const VecDoub &xhigh,
VecDoub funcs(const VecDoub &), Bool inregion(const VecDoub &),
VecDoub xmap(const VecDoub &), Int ranseed)
: ndim(xlow.size()), n(0), xlo(xlow), xhi(xhigh), x(ndim), xx(ndim),
funcsp(funcs), xmapp(xmap), inregionp(inregion), vol(l.), ran(ranseed) {
if (xmapp) nfun = funcs(zmapp(xlo)).size();
else nfun = funcs(xlo).size();
ff.resize(nfun);
fferr.resize(nfun);
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fn.resize(nfun);

sf.assign(nfun,0.);

sferr.assign(nfun,0.);

for (Int j=0;j<ndim;j++) vol *= abs(xhi[jl-xlo[jl);
}

void MCintegrate::step(Int nstep) {
Int i,j;
for (i=0;i<nstep;i++) {
for (j=0;j<ndim;j++)
x[j] = xlo[jl+(xhi[jl-x1lo[j])*ran.doub();
if (xmapp) xx = (xxmapp) (x);
else xx = X;
if ((*inregionp) (xx)) {
fn = (*funcsp) (xx);
for (j=0;j<nfun;j++) {
sf[jl += fn[j];
sferr[j] += SQR(fn[jl);

b
}
n += nstep;

}

void MCintegrate::calcanswers(){
for (Int j=0;j<nfun;j++) {
f£[j] = vol*sf[jl/m;
fferr[j] = vol*sqrt((sferr[jl/n-SQR(sf[jl/n))/n);
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7.8 Quasi- (that is, Sub-) Random Sequences

We have just seen that choosing N points uniformly randomly in an n-dimen-
sional space leads to an error term in Monte Carlo integration that decreases as
1/+/N. In essence, each new point sampled adds linearly to an accumulated sum
that will become the function average, and also linearly to an accumulated sum of
squares that will become the variance (equation 7.7.2). The estimated error comes
from the square root of this variance, hence the power N ~1/2.

Just because this square-root convergence is familiar does not, however, mean
that it is inevitable. A simple counterexample is to choose sample points that lie
on a Cartesian grid, and to sample each grid point exactly once (in whatever order).
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The Monte Carlo method thus becomes a deterministic quadrature scheme — albeit
a simple one — whose fractional error decreases at least as fast as N ! (even faster
if the function goes to zero smoothly at the boundaries of the sampled region or is
periodic in the region).

The trouble with a grid is that one has to decide in advance how fine it should
be. One is then committed to completing all of its sample points. With a grid, it is
not convenient to “sample until” some convergence or termination criterion is met.
One might ask if there is not some intermediate scheme, some way to pick sample
points “at random,” yet spread out in some self-avoiding way, avoiding the chance
clustering that occurs with uniformly random points.

A similar question arises for tasks other than Monte Carlo integration. We might
want to search an n-dimensional space for a point where some (locally computable)
condition holds. Of course, for the task to be computationally meaningful, there
had better be continuity, so that the desired condition will hold in some finite 7-
dimensional neighborhood. We may not know a priori how large that neighborhood
is, however. We want to “sample until” the desired point is found, moving smoothly
to finer scales with increasing samples. Is there any way to do this that is better than
uncorrelated, random samples?

The answer to the above question is “yes.” Sequences of n-tuples that fill n-
space more uniformly than uncorrelated random points are called quasi-random se-
quences. That term is somewhat of a misnomer, since there is nothing “random”
about quasi-random sequences: They are cleverly crafted to be, in fact, subrandom.
The sample points in a quasi-random sequence are, in a precise sense, “maximally
avoiding” of each other.

A conceptually simple example is Halton’s sequence [1]. In one dimension, the
Jth number H; in the sequence is obtained by the following steps: (i) Write j as a
number in base b, where b is some prime. (For example, j = 17 inbase b = 3 is
122.) (ii) Reverse the digits and put a radix point (i.e., a decimal point base ») in
front of the sequence. (In the example, we get 0.221 base 3.) The result is H;. To
get a sequence of n-tuples in n-space, you make each component a Halton sequence
with a different prime base b. Typically, the first n primes are used.

It is not hard to see how Halton’s sequence works: Every time the number of
digits in j increases by one place, j’s digit-reversed fraction becomes a factor of b
finer-meshed. Thus the process is one of filling in all the points on a sequence of finer
and finer Cartesian grids — and in a kind of maximally spread-out order on each grid
(since, e.g., the most rapidly changing digit in j controls the most significant digit
of the fraction).

Other ways of generating quasi-random sequences have been proposed by Faure,
Sobol’, Niederreiter, and others. Bratley and Fox [2] provide a good review and refer-
ences, and discuss a particularly efficient variant of the Sobol’ [3] sequence suggested
by Antonov and Saleev [4]. It is this Antonov-Saleev variant whose implementation
we now discuss.

The Sobol’ sequence generates numbers between zero and one directly as binary frac-
tions of length w bits, from a set of w special binary fractions, V;, i = 1,2,..., w, called
direction numbers. In Sobol’s original method, the jth number X is generated by XORing
(bitwise exclusive or) together the set of V;’s satisfying the criterion on i, “the ith bit of j is
nonzero.” As j increments, in other words, different ones of the V;’s flash in and out of X J
on different time scales. V1 alternates between being present and absent most quickly, while



7.8 Quasi- (that is, Sub-) Random Sequences 405

1_||.|,||-||||.|||-|||.|.|||‘ 1_|.|..|.| |..||||..n||,:|..*|..||||..:
8k . S © .. . ) . 7_ 8 _—...', o .--:. .'.. ':-..’.°.-... ‘::
O 6ot T R L
4 __: - [N o ) ©oe .__ 4 ::. ..o ..'o: ‘3. . . .... .:.:-._'
2 _: . R o . .. .' . . _; 2 ;:.. .. -. .- °...o: . ... . “..- . .9 ...._
00, |.I L |.I0.| |'|.I L 1S e ] O_.:.I |.|01..|.-|0F.| |'|.I.|.|.b.|.-|"|..|.-
0 2 4 .6 .8 1 0 2 4 .6 .8 1
points 1 to 128 points 129 to 512
| S A ST S B PO
8 __! ..:..a :'... ®e : % :"..... ..'.: KX o..:
6 __:'.. ' e . ';._‘ o
4 _— :o.:::.o :... ’ .o: .:.:.’-. ) :‘.: ) -:—;
2 _:. ..'.= .o..: K ..n... ..:'... *, XA :i
0[ |.’|.:|.o| |:.p | T..I |°.|.°.|. .I |."|. |- I |.: s
0 2 4 .6 .8 1 0 2 4 .6 .8 1
points 513 to 1024 points 1 to 1024

Figure 7.8.1. First 1024 points of a two-dimensional Sobol” sequence. The sequence is generated number-
theoretically, rather than randomly, so successive points at any stage “know” how to fill in the gaps in the
previously generated distribution.

Vj goes from present to absent (or vice versa) only every 2k—1 steps.

Antonov and Saleev’s contribution was to show that instead of using the bits of the
integer j to select direction numbers, one could just as well use the bits of the Gray code of
Jj» G(j). (For a quick review of Gray codes, look at §22.3.)

Now G(j) and G(j + 1) differ in exactly one bit position, namely in the position of the
rightmost zero bit in the binary representation of j (adding a leading zero to j if necessary).
A consequence is that the j + 1st Sobol’-Antonov-Saleev number can be obtained from the
jth by XORing it with a single V;, namely with i the position of the rightmost zero bit in ;.
This makes the calculation of the sequence very efficient, as we shall see.

Figure 7.8.1 plots the first 1024 points generated by a two-dimensional Sobol’ sequence.
One sees that successive points do “know’ about the gaps left previously, and keep filling them
in, hierarchically.

We have deferred to this point a discussion of how the direction numbers V; are gen-
erated. Some nontrivial mathematics is involved in that, so we will content ourselves with a
cookbook summary only: Each different Sobol” sequence (or component of an n-dimensional
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Degree Primitive Polynomials Modulo 2*

1 0Ge,x+1)

2 1Ge,x2+x+1)

3 1,2 Ge, x> +x+ 1and x3 + x2 + 1)

4 14Ge,x*+x+Tandx*+x3+1)

5 2,4,7,11,13, 14

6 1,13, 16, 19, 22,25

7 1,4,7,8, 14,19, 21,28, 31, 32, 37, 41, 42, 50, 55, 56, 59, 62

8 14, 21, 22, 38, 47, 49, 50, 52, 56, 67, 70, 84, 97, 103, 115, 122

9 8, 13, 16, 22, 25, 44, 47, 52, 55, 59, 62, 67, 74, 81, 82, 87, 91, 94, 103, 104, 109, 122,

124, 137, 138, 143, 145, 152, 157, 167, 173, 176, 181, 182, 185, 191, 194, 199, 218,
220, 227, 229, 230, 234, 236, 241, 244, 253

10 4,13, 19, 22,50, 55, 64, 69, 98, 107, 115, 121, 127, 134, 140, 145, 152, 158, 161, 171,
181, 194, 199, 203, 208, 227, 242, 251, 253, 265, 266, 274, 283, 289, 295, 301, 316,
319, 324, 346, 352, 361, 367, 382, 395, 398, 400, 412, 419, 422, 426, 428, 433, 446,
454, 457, 472, 493, 505, 508

*Expressed as a decimal integer whose binary representation gives the coefficients, from the
highest to lowest power of x. Only the internal terms are represented — the highest-order term
and the constant term always have coefficient 1.

sequence) is based on a different primitive polynomial over the integers modulo 2, that is, a
polynomial whose coefficients are either O or 1, and which generates a maximal length shift
register sequence. (Primitive polynomials modulo 2 were used in §7.5 and are further dis-
cussed in §22.4.) Suppose P is such a polynomial, of degree ¢,

P=x?+arx? ' fax®2 4. fag1x+1 (7.8.1)
Define a sequence of integers M; by the g-term recurrence relation,
M =2a1Mi—1 ®2%a:Mi— & - ®29 " Mi_g41aq-1 ® 2IMi_g & Mi—_y) (7.8.2)

Here bitwise XOR is denoted by . The starting values for this recurrence are that M1, ..., My
can be arbitrary odd integers less than 2, . .., 29, respectively. Then, the direction numbers V;
are given by

Vi=M;/2  i=1,...w (7.8.3)

The table above lists all primitive polynomials modulo 2 with degree ¢ < 10. Since the
coefficients are either O or 1, and since the coefficients of x4 and of 1 are predictably 1, it
is convenient to denote a polynomial by its middle coefficients taken as the bits of a binary
number (higher powers of x being more significant bits). The table uses this convention.

Turn now to the implementation of the Sobol’ sequence. Successive calls to the function
sobseq (after a preliminary initializing call) return successive points in an n-dimensional
Sobol’ sequence based on the first n primitive polynomials in the table. As given, the routine
is initialized for maximum n of 6 dimensions, and for a word length w of 30 bits. These
parameters can be altered by changing MAXBIT (= w) and MAXDIM, and by adding more
initializing data to the arrays ip (the primitive polynomials from the table above), mdeg (their
degrees), and iv (the starting values for the recurrence, equation 7.8.2). A second table, on
the next page, elucidates the initializing data in the routine.
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Initializing Values Used in sobseq

Degree | Polynomial Starting Values

1 0 113 |G| das...

2 1 1 1 @ | dh...

3 1 1 3 7 4)...

3 2 | 3 3 (15) ...

4 1 1 1 3 13...

4 4 1 1 5 9...
Parenthesized values are not freely specifiable, but are forced by the required
recurrence for this degree.

void sobseq(const Int n, VecDoub_0 &x) sobseq.h
When n is negative, internally initializes a set of MAXBIT direction numbers for each of MAXDIM
different Sobol’ sequences. When n is positive (but <MAXDIM), returns as the vector x[0. .n-1]
the next values from n of these sequences. (n must not be changed between initializations.)
{

const Int MAXBIT=30,MAXDIM=6;

Int j,k,1;

Uint i,im,ipp;

static Int mdeg[MAXDIM]={1,2,3,3,4,4};

static Uint in;

static VecUint ix(MAXDIM);

static NRvector<Uint*> iu(MAXBIT);

static Uint ip[MAXDIM]={0,1,1,2,1,4};

static Uint iv[MAXDIM*MAXBIT]=

{1,1,1,1,1,1,3,1,3,3,1,1,5,7,7,3,3,5,15,11,5,15,13,9};
static Doub fac;

if (n < 0) { Initialize, don’t return a vector.
for (k=0;k<MAXDIM;k++) ix[k]=0;
in=0;
if (iv[0] '= 1) return;

fac=1.0/(1 << MAXBIT);
for (j=0,k=0;j<MAXBIT;j++,k+=MAXDIM) iulj] = &iv[k];
To allow both 1D and 2D addressing.
for (k=0;k<MAXDIM;k++) {
for (j=0;j<mdeglk];j++) iuljl[k] <<= (MAXBIT-1-j);
Stored values only require normalization.
for (j=mdegl[k];j<MAXBIT;j++) { Use the recurrence to get other val-
ipp=ip[k]; ues.
i=iulj-mdeglk]] [k];
i "= (i > mdeglk]);
for (1=mdeglk]-1;1>=1;1--) {
if (ipp & 1) i ~= iul[j-1]1[k];

ipp >>= 1;
iulj] [k]=i;

}

}
} else { Calculate the next vector in the se-

im=in++; quence.
for (j=0;j<MAXBIT;j++) { Find the rightmost zero bit.

if (! (im & 1)) break;

im >>= 1;
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if (j >= MAXBIT) throw("MAXBIT too small in sobseq");
im=j*MAXDIM;

for (k=0;k<MIN(n,MAXDIM) ;k++) { XOR the appropriate direction num-
ix[k] "= iv[im+k]; ber into each component of the
x[k]=ix[k] *fac; vector and convert to a floating
} number.

How good is a Sobol’ sequence, anyway? For Monte Carlo integration of a smooth
function in n dimensions, the answer is that the fractional error will decrease with N, the
number of samples, as (In N)" /N, i.e., almost as fast as 1 /N. As an example, let us integrate
a function that is nonzero inside a torus (doughnut) in three-dimensional space. If the major
radius of the torus is Rp and the minor radius is rg, the minor radial coordinate r is defined by

1/2
r= (sz + )2~ Ro)? + zz) (7.8.4)
Let us try the function
14 wr? -
cos | — r<r
[l y.z) = r 0 (7.8.5)
0 r>ro

which can be integrated analytically in cylindrical coordinates, giving

f/ dxdydz f(x,y,z) = anrgRo (7.8.6)

With parameters Rop = 0.6, ro = 0.3, we did 100 successive Monte Carlo integrations of
equation (7.8.4), sampling uniformly in the region —1 < x,y,z < 1, for the two cases of
uncorrelated random points and the Sobol’ sequence generated by the routine sobseq. Figure
7.8.2 shows the results, plotting the r.m.s. average error of the 100 integrations as a function
of the number of points sampled. (For any single integration, the error of course wanders
from positive to negative, or vice versa, so a logarithmic plot of fractional error is not very
informative.) The thin, dashed curve corresponds to uncorrelated random points and shows
the familiar N ~1/2 asymptotics. The thin, solid gray curve shows the result for the Sobol’
sequence. The logarithmic term in the expected (In N)3 /N is readily apparent as curvature in
the curve, but the asymptotic N ~! is unmistakable.

To understand the importance of Figure 7.8.2, suppose that a Monte Carlo integration of
f with 1% accuracy is desired. The Sobol’ sequence achieves this accuracy in a few thousand
samples, while pseudo-random sampling requires nearly 100,000 samples. The ratio would
be even greater for higher desired accuracies.

A different, not quite so favorable, case occurs when the function being integrated has
hard (discontinuous) boundaries inside the sampling region, for example the function that is
one inside the torus and zero outside,

r <ro

1
f(x,y,2) = 0 (7.8.7)

r=ro

where r is defined in equation (7.8.4). Not by coincidence, this function has the same analytic
integral as the function of equation (7.8.5), namely 27r2rg Ro.

The carefully hierarchical Sobol” sequence is based on a set of Cartesian grids, but the
boundary of the torus has no particular relation to those grids. The result is that it is essentially
random whether sampled points in a thin layer at the surface of the torus, containing on the
order of N2/3 points, come out to be inside or outside the torus. The square root law, applied

to this thin layer, gives N 1/3 fluctuations in the sum, or N ~2/3 fractional error in the Monte
Carlo integral. One sees this behavior verified in Figure 7.8.2 by the thicker gray curve. The
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Figure 7.8.2. Fractional accuracy of Monte Carlo integrations as a function of number of points sampled,
for two different integrands and two different methods of choosing random points. The quasi-random
Sobol’ sequence converges much more rapidly than a conventional pseudo-random sequence. Quasi-
random sampling does better when the integrand is smooth (“soft boundary”) than when it has step dis-
continuities (‘“hard boundary”). The curves shown are the r.m.s. averages of 100 trials.

thicker dashed curve in Figure 7.8.2 is the result of integrating the function of equation (7.8.7)
using independent random points. While the advantage of the Sobol’ sequence is not quite so
dramatic as in the case of a smooth function, it can nonetheless be a significant factor (~5)
even at modest accuracies like 1%, and greater at higher accuracies.

Note that we have not provided the routine sobseq with a means of starting the sequence
at a point other than the beginning, but this feature would be easy to add. Once the initial-
ization of the direction numbers iv has been done, the jth point can be obtained directly by
XORing together those direction numbers corresponding to nonzero bits in the Gray code of
J, as described above.

7.8.1 The Latin Hypercube

We mention here the unrelated technique of Latin square or Latin hypercube
sampling, which is useful when you must sample an N -dimensional space exceed-
ingly sparsely, at M points. For example, you may want to test the crashworthiness
of cars as a simultaneous function of four different design parameters, but with a
budget of only three expendable cars. (The issue is not whether this is a good plan
— it isn’t — but rather how to make the best of the situation!)

The idea is to partition each design parameter (dimension) into M segments,
so that the whole space is partitioned into M cells. (You can choose the segments
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in each dimension to be equal or unequal, according to taste.) With four parameters
and three cars, for example, you end up with 3 x 3 x 3 x 3 = 81 cells.

Next, choose M cells to contain the sample points by the following algorithm:
Randomly choose one of the MY cells for the first point. Now eliminate all cells
that agree with this point on any of its parameters (that is, cross out all cells in the
same row, column, etc.), leaving (M — l)N candidates. Randomly choose one of
these, eliminate new rows and columns, and continue the process until there is only
one cell left, which then contains the final sample point.

The result of this construction is that each design parameter will have been
tested in every one of its subranges. If the response of the system under test is
dominated by one of the design parameters (the main effect), that parameter will
be found with this sampling technique. On the other hand, if there are important
interaction effects among different design parameters, then the Latin hypercube gives
no particular advantage. Use with care.

There is a large field in statistics that deals with design of experiments. A brief
pedagogical introduction is [5].
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7.9 Adaptive and Recursive Monte Carlo
Methods

This section discusses more advanced techniques of Monte Carlo integration. As ex-
amples of the use of these techniques, we include two rather different, fairly sophisticated,
multidimensional Monte Carlo codes: vegas [1,2], and miser [4]. The techniques that we
discuss all fall under the general rubric of reduction of variance (§7.7), but are otherwise
quite distinct.
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7.9.1 Importance Sampling

The use of importance sampling was already implicit in equations (7.7.6) and (7.7.7).
We now return to it in a slightly more formal way. Suppose that an integrand f can be written
as the product of a function / that is almost constant times another, positive, function g. Then
its integral over a multidimensional volume V is

/de =/(f/g)ng = /hng (7.9.1)

In equation (7.7.7) we interpreted equation (7.9.1) as suggesting a change of variable to G,
the indefinite integral of g. That made gd V' a perfect differential. We then proceeded to use
the basic theorem of Monte Carlo integration, equation (7.7.1). A more general interpretation
of equation (7.9.1) is that we can integrate f by instead sampling # — not, however, with
uniform probability density dV, but rather with nonuniform density gd V. In this second
interpretation, the first interpretation follows as the special case, where the means of generat-
ing the nonuniform sampling of gd V' is via the transformation method, using the indefinite
integral G (see §7.3).

More directly, one can go back and generalize the basic theorem (7.7.1) to the case
of nonuniform sampling: Suppose that points x; are chosen within the volume V' with a
probability density p satisfying

[ pdV =1 (7.9.2)

The generalized fundamental theorem is that the integral of any function f is estimated, using
N sample points xg,...,xXNy—1, by

IE/dez/%pdV&*<£>:l:\/(fz/p2>];(f/p)2 (7.9.3)

where angle brackets denote arithmetic means over the N points, exactly as in equation (7.7.2).
As in equation (7.7.1), the “plus-or-minus” term is a one standard deviation error estimate.
Notice that equation (7.7.1) is in fact the special case of equation (7.9.3), with p = constant =
1/V.

What is the best choice for the sampling density p? Intuitively, we have already seen
that the idea is to make 7 = f/p as close to constant as possible. We can be more rigorous
by focusing on the numerator inside the square root in equation (7.9.3), which is the variance
per sample point. Both angle brackets are themselves Monte Carlo estimators of integrals, so
we can write

e R E 2o Y L | P

We now find the optimal p subject to the constraint equation (7.9.2) by the functional variation

O=%</f72dV—|:/de]z+k/pdV) (7.9.5)

with A a Lagrange multiplier. Note that the middle term does not depend on p. The variation
(which comes inside the integrals) gives 0 = — f2/p? + A or

L, ]
JE J171dv

where A has been chosen to enforce the constraint (7.9.2).

If f has one sign in the region of integration, then we get the obvious result that the
optimal choice of p — if one can figure out a practical way of effecting the sampling — is
that it be proportional to | f|. Then the variance is reduced to zero. Not so obvious, but seen

(7.9.6)
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to be true, is the fact that p o | ] is optimal even if f takes on both signs. In that case the
variance per sample point (from equations 7.9.4 and 7.9.6) is

2 2
5 = Supuma = ([ 1710V) = ([ rav) (797

One curiosity is that one can add a constant to the integrand to make it all of one sign,
since this changes the integral by a known amount, constantx V. Then, the optimal choice of p
always gives zero variance, that is, a perfectly accurate integral! The resolution of this seeming
paradox (already mentioned at the end of §7.7) is that perfect knowledge of p in equation
(7.9.6) requires perfect knowledge of [ | f|dV, which is tantamount to already knowing the
integral you are trying to compute!

If your function f takes on a known constant value in most of the volume V/, it is
certainly a good idea to add a constant so as to make that value zero. Having done that, the
accuracy attainable by importance sampling depends in practice not on how small equation
(7.9.7) is, but rather on how small is equation (7.9.4) for an implementable p, likely only a
crude approximation to the ideal.

7.9.2 Stratified Sampling

The idea of stratified sampling is quite different from importance sampling. Let us ex-
pand our notation slightly and let {( )) denote the true average of the function f over the
volume V' (namely the integral divided by V'), while ( /') denotes as before the simplest (uni-
formly sampled) Monte Carlo estimator of that average:

(=g [rav = %Ime) 1.98)

The variance of the estimator, Var ({ f')), which measures the square of the error of the Monte
Carlo integration, is asymptotically related to the variance of the function, Var ( f) = (( f?)) —

{( £)?, by the relation
_ Var (f)

Var ((£) = =

(7.9.9)

(compare equation 7.7.1).

Suppose we divide the volume V' into two equal, disjoint subvolumes, denoted a and b,
and sample N/2 points in each subvolume. Then another estimator for {{ f)), different from
equation (7.9.8), which we denote ( f)’, is

(Y =3 a+ () (7.9.10)

in other words, the mean of the sample averages in the two half-regions. The variance of
estimator (7.9.10) is given by

L Var (1)) + Var ((£))]

_ 1 [Varg (f) | Vary (f)
_Z[ N2 N2 }

Var ((f)')

(7.9.11)

_ % [Varg (f) + Vary, ()]

Here Var, (f) denotes the variance of f in subregion a, that is, {( f2))q¢ — ()2, and corre-
spondingly for b.
From the definitions already given, it is not difficult to prove the relation

Var (f) = 1 [Varg (f) + Vary, (/)] + L ((/Na = (/)s)? (7.9.12)
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(In physics, this formula for combining second moments is the “parallel axis theorem.”) Com-
paring equations (7.9.9), (7.9.11), and (7.9.12), one sees that the stratified (into two subvol-
umes) sampling gives a variance that is never larger than the simple Monte Carlo case — and
smaller whenever the means of the stratified samples, {( f ))4 and {( ')}, are different.

We have not yet exploited the possibility of sampling the two subvolumes with different
numbers of points, say N, in subregion a and N, = N — N, in subregion b. Let us do so
now. Then the variance of the estimator is

1 ['Varg (f) | Varp (f)
% )=~ 7.9.13
ar ((/)) 4[ AR (7.9.13)
which is minimized (one can easily verify) when
N,
Do %a (7.9.14)
N O-a + O-b

Here we have adopted the shorthand notation o, = [Var, (f)] 1/2 and correspondingly for b.

If N, satisfies equation (7.9.14), then equation (7.9.13) reduces to

2
Var((f)l) = —(Oa :fob)

Equation (7.9.15) reduces to equation (7.9.9) if Var (f) = Var, (f) = Vary (f), in which
case stratifying the sample makes no difference.

A standard way to generalize the above result is to consider the volume V' divided into
more than two equal subregions. One can readily obtain the result that the optimal allocation of
sample points among the regions is to have the number of points in each region j proportional
to o; (that is, the square root of the variance of the function f in that subregion). In spaces
of high dimensionality (say d = 4) this is not in practice very useful, however. Dividing a
volume into K segments along each dimension implies K 4 subvolumes, typically much too
large a number when one contemplates estimating all the corresponding o ’s.

(7.9.15)

7.9.3 Mixed Strategies

Importance sampling and stratified sampling seem, at first sight, inconsistent with each
other. The former concentrates sample points where the magnitude of the integrand | f| is
largest, the latter where the variance of f is largest. How can both be right?

The answer is that (like so much else in life) it all depends on what you know and how
well you know it. Importance sampling depends on already knowing some approximation to
your integral, so that you are able to generate random points x; with the desired probability
density p. To the extent that your p is not ideal, you are left with an error that decreases

only as N —1/2, Things are particularly bad if your p is far from ideal in a region where the
integrand f is changing rapidly, since then the sampled function # = f/p will have a large
variance. Importance sampling works by smoothing the values of the sampled function /2 and
is effective only to the extent that you succeed in this.

Stratified sampling, by contrast, does not necessarily require that you know anything
about f. Stratified sampling works by smoothing out the fluctuations of the number of points
in subregions, not by smoothing the values of the points. The simplest stratified strategy, di-
viding V' into N equal subregions and choosing one point randomly in each subregion, already

gives a method whose error decreases asymptotically as N ~!, much faster than N -1z, (Note
that quasi-random numbers, §7.8, are another way of smoothing fluctuations in the density of
points, giving nearly as good a result as the “blind” stratification strategy.)

However, “asymptotically” is an important caveat: For example, if the integrand is neg-
ligible in all but a single subregion, then the resulting one-sample integration is all but useless.
Information, even very crude, allowing importance sampling to put many points in the active
subregion would be much better than blind stratified sampling.

Stratified sampling really comes into its own if you have some way of estimating the
variances, so that you can put unequal numbers of points in different subregions, according
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to (7.9.14) or its generalizations, and if you can find a way of dividing a region into a prac-
tical number of subregions (notably not K 4 with large dimension d), while yet significantly
reducing the variance of the function in each subregion compared to its variance in the full
volume. Doing this requires a lot of knowledge about f, though different knowledge from
what is required for importance sampling.

In practice, importance sampling and stratified sampling are not incompatible. In many,
if not most, cases of interest, the integrand f is small everywhere in V' except for a small
fractional volume of “active regions.” In these regions the magnitude of | /| and the standard
deviation ¢ = [Var (f )]1/ 2 are comparable in size, so both techniques will give about the
same concentration of points. In more sophisticated implementations, it is also possible to
“nest” the two techniques, so that, e.g., importance sampling on a crude grid is followed by
stratification within each grid cell.

7.9.4 Adaptive Monte Carlo: VEGAS

The VEGAS algorithm, invented by Peter Lepage [1,2], is widely used for multidimen-
sional integrals that occur in elementary particle physics. VEGAS is primarily based on im-
portance sampling, but it also does some stratified sampling if the dimension d is small enough
to avoid K¢ explosion (specifically, if (K/ 2)d < N/2, with N the number of sample points).
The basic technique for importance sampling in VEGAS is to construct, adaptively, a multidi-
mensional weight function g that is separable,

pxgx,y.z,...)=gx(x)gy(y)gz(2)... (7.9.16)

Such a function avoids the K¢ explosion in two ways: (i) It can be stored in the computer
as d separate one-dimensional functions, each defined by K tabulated values, say — so that
K x d replaces K d (i1) It can be sampled as a probability density by consecutively sampling
the d one-dimensional functions to obtain coordinate vector components (x, y, z, . ..).

The optimal separable weight function can be shown to be [1]
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(and correspondingly for y, z,...). Notice that this reduces to g o | f] (7.9.6) in one di-
mension. Equation (7.9.17) immediately suggests VEGAS’ adaptive strategy: Given a set of
g-functions (initially all constant, say), one samples the function f, accumulating not only
the overall estimator of the integral, but also the Kd estimators (K subdivisions of the inde-
pendent variable in each of d dimensions) of the right-hand side of equation (7.9.17). These
then determine improved g functions for the next iteration.

When the integrand f is concentrated in one, or at most a few, regions in d-space, then
the weight function g’s quickly become large at coordinate values that are the projections of
these regions onto the coordinate axes. The accuracy of the Monte Carlo integration is then
enormously enhanced over what simple Monte Carlo would give.

The weakness of VEGAS is the obvious one: To the extent that the projection of the
function f onto individual coordinate directions is uniform, VEGAS gives no concentration
of sample points in those dimensions. The worst case for VEGAS, e.g., is an integrand that is
concentrated close to a body diagonal line, e.g., one from (0,0,0,...) to (1,1,1,...). Since
this geometry is completely nonseparable, VEGAS can give no advantage at all. More gen-
erally, VEGAS may not do well when the integrand is concentrated in one-dimensional (or
higher) curved trajectories (or hypersurfaces), unless these happen to be oriented close to the
coordinate directions.

The routine vegas that follows is essentially Lepage’s standard version, minimally mod-
ified to conform to our conventions. (We thank Lepage for permission to reproduce the pro-
gram here.) For consistency with other versions of the VEGAS algorithm in circulation, we
have preserved original variable names. The parameter NDMX is what we have called K, the
maximum number of increments along each axis; MXDIM is the maximum value of d; some
other parameters are explained in the comments.
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The vegas routine performs 7 = itmx statistically independent evaluations of the de-
sired integral, each with N = ncall function evaluations. While statistically independent,
these iterations do assist each other, since each one is used to refine the sampling grid for the
next one. The results of all iterations are combined into a single best answer, and its estimated
error, by the relations

—1/2
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Also returned is the quantity
1 (0 = Thes)?
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= 7.9.19
12jm=— ZO -2 (7.9.19)

If this is significantly larger than 1, then the results of the iterations are statistically inconsis-
tent, and the answers are suspect.
Here is the interface to vegas. (The full code is given in [3].)

void vegas(VecDoub_I &regn, Doub fxn(VecDoub_I &, const Doub), const Int init,
const Int ncall, const Int itmx, const Int nprn, Doub &tgral, Doub &sd,
Doub &chi2a) {
Performs Monte Carlo integration of a user-supplied ndim-dimensional function fxn over a
rectangular volume specified by regn[0..2*ndim-1], a vector consisting of ndim “lower left”
coordinates of the region followed by ndim “upper right” coordinates. The integration consists
of itmx iterations, each with approximately ncall calls to the function. After each iteration
the grid is refined; more than 5 or 10 iterations are rarely useful. The input flag init signals
whether this call is a new start or a subsequent call for additional iterations (see comments in the
code). The input flag nprn (normally 0) controls the amount of diagnostic output. Returned
answers are tgral (the best estimate of the integral), sd (its standard deviation), and chi2a
()(2 per degree of freedom, an indicator of whether consistent results are being obtained). See
text for further details.

The input flag init can be used to advantage. One might have a call with init=0,
ncall=1000, itmx=5 immediately followed by a call with init=1,ncall=100000, itmx=1.
The effect would be to develop a sampling grid over five iterations of a small number of
samples, then to do a single high accuracy integration on the optimized grid.

To use vegas for the torus example discussed in §7.7 (the density integrand only, say),
the function £xn would be

Doub torusfunc(const VecDoub &x, const Doub wgt) {
Doub den = exp(5.*x[2]);
if (SQR(x[2]1)+SQR(sqrt(SQR(x[0]1)+SQR(x[1]1))-3.) <= 1.) return den;
else return O.;

}
and the main code would be

Doub tgral, sd, chi2a;

VecDoub regn(6);

regn[0] = 1.; regn[3] = 4.;

regn[1] = -3.; regn[4] = 4.;

regn[2] -1.; regn[5] = 1.;

vegas (regn,torusfunc,0,10000,10,0,tgral,sd,chi2a) ;
vegas (regn,torusfunc,1,900000,1,0,tgral,sd,chi2a);

Note that the user-supplied integrand function, £xn, has an argument wgt in addition
to the expected evaluation point x. In most applications you ignore wgt inside the function.
Occasionally, however, you may want to integrate some additional function or functions along
with the principal function f. The integral of any such function g can be estimated by

Ig =) wig(x) (7.9.20)
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where the w;’s and x’s are the arguments wgt and x, respectively. It is straightforward to ac-
cumulate this sum inside your function £xn and to pass the answer back to your main program
via global variables. Of course, g(x) had better resemble the principal function f to some
degree, since the sampling will be optimized for f.

The full listing of vegas is given in a Webnote [3].

7.9.5 Recursive Stratified Sampling

The problem with stratified sampling, we have seen, is that it may not avoid the K d
explosion inherent in the obvious, Cartesian, tessellation of a d-dimensional volume. A tech-
nique called recursive stratified sampling [4] attempts to do this by successive bisections of a
volume, not along all d dimensions, but rather along only one dimension at a time. The start-
ing points are equations (7.9.10) and (7.9.13), applied to bisections of successively smaller
subregions.

Suppose that we have a quota of N evaluations of the function f and want to evaluate
(f) in the rectangular parallelepiped region R = (X4, Xp). (We denote such a region by the
two coordinate vectors of its diagonally opposite corners.) First, we allocate a fraction p of N
toward exploring the variance of f in R: We sample pN function values uniformly in R and
accumulate the sums that will give the d different pairs of variances corresponding to the d
different coordinate directions along which R can be bisected. In other words, in pN samples,
we estimate Var ( /') in each of the regions resulting from a possible bisection of R,

— 1
Rai =(Xa,Xp — 5€; - (Xp —Xg)€})

(7.9.21)
Rp; =(Xa + 3€; - (Xp — Xa)€;,Xp)
Here e; is the unit vector in the ith coordinate direction, i = 1,2,...,d.

Second, we inspect the variances to find the most favorable dimension i to bisect. By
equation (7.9.15), we could, for example, choose that i for which the sum of the square roots
of the variance estimators in regions R,; and Rp; is minimized. (Actually, as we will explain,
we do something slightly different.)

Third, we allocate the remaining (1 — p) N function evaluations between the regions R,;
and Rp;. If we used equation (7.9.15) to choose i, we should do this allocation according to
equation (7.9.14).

We now have two parallelepipeds, each with its own allocation of function evaluations
for estimating the mean of f. Our “RSS” algorithm now shows itself to be recursive: To
evaluate the mean in each region, we go back to the sentence beginning “First,...” in the
paragraph above equation (7.9.21). (Of course, when the allocation of points to a region falls
below some number, we resort to simple Monte Carlo rather than continue with the recursion.)

Finally, we combine the means and also estimated variances of the two subvolumes using
equation (7.9.10) and the first line of equation (7.9.11).

This completes the RSS algorithm in its simplest form. Before we describe some addi-
tional tricks under the general rubric of “implementation details,” we need to return briefly to
equations (7.9.13) — (7.9.15) and derive the equations that we actually use instead of these.
The right-hand side of equation (7.9.13) applies the familiar scaling law of equation (7.9.9)
twice, once to a and again to b. This would be correct if the estimates ( /), and (f); were
each made by simple Monte Carlo, with uniformly random sample points. However, the two
estimates of the mean are in fact made recursively. Thus, there is no reason to expect equation
(7.9.9) to hold. Rather, we might substitute for equation (7.9.13) the relation,

:1[\’ara(f)Jr Varp, (f) ]

Var ((f)') (7.9.22)

4 N (N — Ng)“*

where « is an unknown constant > 1 (the case of equality corresponding to simple Monte
Carlo). In that case, a short calculation shows that Var (( f )’) is minimized when

1/(1+a)
Na Varg (f) (7.9.23)
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and that its minimum value is

Var ((f)') o [Vara (f)l/(l"'“) + Vary, (f)l/(H'“)] e (7.9.24)

Equations (7.9.22) — (7.9.24) reduce to equations (7.9.13) — (7.9.15) when o = 1. Numerical
experiments to find a self-consistent value for « find that « &~ 2. That is, when equation
(7.9.23) with @ = 2 is used recursively to allocate sample opportunities, the observed variance
of the RSS algorithm goes approximately as N ~2, while any other value of « in equation
(7.9.23) gives a poorer fall-off. (The sensitivity to « is, however, not very great; it is not
known whether ¢ = 2 is an analytically justifiable result or only a useful heuristic.)

The principal difference between miser’s implementation and the algorithm as described
thus far lies in how the variances on the right-hand side of equation (7.9.23) are estimated. We
find empirically that it is somewhat more robust to use the square of the difference of max-
imum and minimum sampled function values, instead of the genuine second moment of the
samples. This estimator is of course increasingly biased with increasing sample size; however,
equation (7.9.23) uses it only to compare two subvolumes (a and b) having approximately
equal numbers of samples. The “max minus min” estimator proves its worth when the pre-
liminary sampling yields only a single point, or a small number of points, in active regions of
the integrand. In many realistic cases, these are indicators of nearby regions of even greater
importance, and it is useful to let them attract the greater sampling weight that “max minus
min” provides.

A second modification embodied in the code is the introduction of a “dithering parame-
ter,” dith, whose nonzero value causes subvolumes to be divided not exactly down the middle,
but rather into fractions 0.51+dith, with the sign of the 4 randomly chosen by a built-in ran-
dom number routine. Normally dith can be set to zero. However, there is a large advantage
in taking dith to be nonzero if some special symmetry of the integrand puts the active region
exactly at the midpoint of the region, or at the center of some power-of-two submultiple of
the region. One wants to avoid the extreme case of the active region being evenly divided
into 24 abutting corners of a d-dimensional space. A typical nonzero value of dith, on those
occasions when it is useful, might be 0.1. Of course, when the dithering parameter is nonzero,
we must take the differing sizes of the subvolumes into account; the code does this through
the variable fracl.

One final feature in the code deserves mention. The RSS algorithm uses a single set
of sample points to evaluate equation (7.9.23) in all d directions. At the bottom levels of
the recursion, the number of sample points can be quite small. Although rare, it can happen
that in one direction all the samples are in one half of the volume; in that case, that direction
is ignored as a candidate for bifurcation. Even more rare is the possibility that all of the
samples are in one half of the volume in all directions. In this case, a random direction is
chosen. If this happens too often in your application, then you should increase MNPT (see line
if (jb == -1)...1in the code).

Note that miser, as given, returns as ave an estimate of the average function value
{(_f)), not the integral of f over the region. The routine vegas, adopting the other convention,
returns as tgral the integral. The two conventions are of course trivially related, by equation
(7.9.8), since the volume V' of the rectangular region is known.

The interface to the miser routine is this:

void miser(Doub func(VecDoub_I &), VecDoub_I &regn, const Int npts,
const Doub dith, Doub &ave, Doub &var) {

Monte Carlo samples a user-supplied ndim-dimensional function func in a rectangular volume
specified by regn[0..2#ndim-1], a vector consisting of ndim “lower-left” coordinates of the
region followed by ndim “upper-right” coordinates. The function is sampled a total of npts
times, at locations determined by the method of recursive stratified sampling. The mean value
of the function in the region is returned as ave; an estimate of the statistical uncertainty of ave
(square of standard deviation) is returned as var. The input parameter dith should normally
be set to zero, but can be set to (e.g.) 0.1 if func's active region falls on the boundary of a
power-of-two subdivision of region.

Implementing code for the torus problem in §7.7 is
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Doub torusfunc(const VecDoub &x) {
Doub den = exp(5.*x[2]);
if (SQR(x[2])+SQR(sqrt(SQR(x[0])+SQR(x[1]))-3.) <= 1.) return den;
else return O.;

¥
and the main code is

Doub ave, var, tgral, sd, vol = 3.%7.%2.;
regn[0] 1.; regn[3] = 4.;

regn[1] -3.; regnl4] = 4.;

regn[2] = -1.; regn[5] = 1.;

miser (torusfunc,regn,1000000,0.,ave,var);
tgral = ave*vol;

sd = sqrt(var)=*vol;

(Actually, miser is not particularly well-suited to this problem.)

The complete listing of miser is given in a Webnote [5]. The miser routine calls the
short function ranpt to get a random point within a specified d -dimensional region. The ver-
sion of ranpt in the Webnote makes consecutive calls to a uniform random number generator
and does the obvious scaling. One can easily modify ranpt to generate its points via the
quasi-random routine sobseq (§7.8). We find that miser with sobseq can be considerably
more accurate than miser with uniform random deviates. Since the use of RSS and the use of
quasi-random numbers are completely separable, however, we have not made the code given
here dependent on sobseq. A similar remark might be made regarding importance sampling,
which could in principle be combined with RSS. (One could in principle combine vegas and
miser, although the programming would be intricate.)
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