ASSIGNMENT #3: due TODAY
if you need extension, contact me

ASSIGNMENT #4: due FRIDAY 3/18



PROBABILITY Il

Chapters 1+2 of Practical Statistics for Astronomers
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This method is related to the classical technique of MAXIMUM LIKELIHOOD. If the prior is diffuse,
then the posterior probability is proportional to the likelihood term f(data|a) . Maximum likelihood
picks out the mode (i.e., the peak) of the posterior, i.e., the value of (¥ which maximizes the
likelihood. We will learn more on this later...



EXAMPLE 2: Suppose we make an observation at a randomly selected position in the sky. Our
model of the data, an event D consisting of a single measured flux density f, is that it is distributed
in a Gaussian way about the true flux density S with variance o2 .

The extensive body of source counts tells us the a-priori distribution of S, prob(S)=KS-52 (this is the
prior) describing our prior state of knowledge. K normalizes the counts to 1, i.e., there is presumed

to be one source in the beam at some flux-density level.
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NOTE: The increase in data gradually overwhelms the prior but the prior affects the conclusions
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model of the data, an event D consisting of a single measured flux density f, is that it is distributed
in a Gaussian way about the true flux density S with variance o2 .
The extensive body of source counts tells us the a-priori distribution of S, prob(S)=KS-%2 (this is the
prior) describing our prior state of knowledge. K normalizes the counts to 1, i.e., there is presumed
to be one source in the beam at some flux-density level.
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The probability of observing f when the true value is S is the likelihood: € . 20

Bayes’ theorem —> posterior probability = likelihood * prior:
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If we are able to obtain n independent measurements of the flux fi, then

prob(S|D) = K" e 207 2i=1 (fi=5)" g=5/2

Suppose that the source counts extend from 1 to 100 units, the noise level was O — 1, and the
data were 2, 1.3, 3, 1.5, 2, 1.8, then determine the posterior probability of the flux for the first 2, 4,
and 6 measurements.

NOTE: The increase in data gradually overwhelms the prior but the prior affects the conclusions
markedly when there are a few measurements.

NOTE: If | knew nothing about the prior, the mean and sigma of the measurements [2, 1.3, 3, 1.5,
2,1.8]are: p = 1.93 o = 0.59 . From the posterior probability f(x):
peak =1.69 1 =193 o0 =0.39
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There are frequent occasions in probability calculations, hypothesis testing and model fitting when
it is essential to use a set of numbers distributed how we guess the data might be. We need
random numbers.

There are a number of methods to generate random numbers. Key issuesL

1. How long is it before the pseudo-random cycle is repeated? Or how many random numbers do
you need? —> need to understand the characteristics of the generator

2. Follow the prescribed implementation precisely

3. The routines generate pseudo-random numbers, i.e., run them again from the same starting
point and you will get the same set of numbers.

Q: what is a random number produced by the computer?

A: after all, a computer will produce an output following a deterministic algorithm. The way out of
this contradiction is that computer generated random numbers are not strictly random, are pseudo-
random.

We need to have a pragmatic approach: a sequence of numbers would be considered random if
S0 appears relative to a set of statistical tests which are aimed at pointing out correlations.

As a result, what is random for one application may not be random enough for another one.

All computer generated random numbers have a certain statistical range of validity.

The simplest distribution function for random numbers is a constant probability distribution,
a.k.a., uniform deviate. Uniform deviates are the building blocks of random number generation
and Monte Carlo techniques.
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Never use a random number generator which has not been tested!

Numerical Recipes has a good variety of random number generators (all uniform deviates):

ran0: very basic and fast, period of correlation 231~109, i.e., you start to see correlation after 10°
numbers; computational cost cc=1.0 (normalized)

rani: statistically better than ran0, but with smaller period ~108; cc=1.3
ran2: statistically almost perfect; period ~1018 ~ infinity; cc=2.0

rang1: quick and dirty, period ~104-108, cc=0.1, i.e., very fast
rang2: quick and dirty, period ~104-108, cc=0.25, i.e., very fast

Q: why use random numbers?
A: random numbers are the stepping stones of generating distributions functions (a.k.a., deviates)

Example: usually, a uniform deviate generator produces N random numbers between 0 and 1 from
a uniform distribution. If | want N random numbers between 0 and 10 from a uniform distribution, |
multiply those generated from the previous example by 10. If | want N random numbers between 2
and 12 from a uniform distribution, | multiply those generated from the first example by 10 and then
| add 2.
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Suppose that we have a way of producing random deviates that are uniformly distributed over the
range 0-1 in the variable a, i.e., 4 ¢ (0,1) and we have a functional form for our frequency

d

an — f(w) , and we want to draw random numbers from this f(x).
T

d

distribution

We need a transformation x=x(a) to distort the uniformity of a to follow f(x).

dn B dn da da

:@_dadxxdx

We know that f(.CL‘)

since %" is uniform by assumption

da

From whence the required transformation x=x(a), the inverse of * ,
l.e., solve * for x.

a & (O, 1) # x=X(a) other random distribution

random uniform
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EXAMPLE 1: f(x)dx — —1.527%°dx

— /x f(x)dx =z~ 1°

- = a 15 qe(0,1)

EXAMPLE 2: exponential deviate
Suppose you want numbers randomly drawn from a distribution that is inversely exponential

f(z) = # r=—1Ina

function expdev(seed)
tmp = rant (seed) —> this produces a uniform deviate
exdev = -In(tmp) —> this produces the exponential deviate

end function

In general,
you want a set of random numbers drawn from a distribution f(x » |

Taking the integral, a(x) / f(x F(x) primitive function

So that, x=x(a), x=F-1(a) inverse function of the primitive (ex., F = e-; F-1=-In)



The transformation method has a limited validity: it is limited by the knowledge of F-1(a); this is
known analytically for the exponential and a normal (Gaussian) deviates.

Q: What if F-1(a) cannot be calculated?
A: We use the rejection method (general, but not as efficient as the transformation method)

/\ We want to produce random numbers drawn
\ f (%) from the distribution p(x). f(x) is a Gaussian
which | know to construct (it should be integrable
and invertible, so that a random sample can
easily be obtained from f(x) through the previous
transformation method).

If | can construct a distribution function that follows f(x) and that incorporates p(x), then | can
reject the excess and be left with the desired deviate.

Of course, there is an overhead = rejected points =/ f(x)dxr — /p(x)dx

The problem therefore is that of generating random numbers below f(x).
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0

STEP 3: once f(if) in known, | choose a random number Q. from a uniform deviate

between 0 and A = f(il_?) e, a € [07 A= f(a_j)]
STEP4:if a < p(T) ==f)p KEEP

it @ > p(z) == REJECT
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STEP 1: choose a random number with uniform deviate (q & [O, A]

STEP 2: calculate T so that / f(x)dx =a = F(x)
0

STEP 3: once f(if) in known, | choose a random number Q. from a uniform deviate

between 0 and A = f(.f) e, a € [07 A= f(a_j)]
STEP4:if a < p(Z) wmf)p KEEP
it a > p(T) == REJECT

AN
EXAMPLE: f{#=c |-

R AN

STEP 1: | pick a number 2 from a uniform deviate between 0 and Xmax
STEP 2: | pick a random number from a uniform deviate between 0 and C, which | call @

sTEP3:it a < p(Z) — accept
a>p(x) — reject

The REJECTION METHOD is easy to implement, but it can have large overheads, and the smarter
f(x) is chosen, the less overheads it will have.



