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PROBABILITY |

Chapters 1+2 of Practical Statistics for Astronomers



Every measurement we make, and every parameter or value we derive requires an ERROR
ESTIMATE, a measure of range (expressed in terms of probability) that encompasses our belief of
the true value of the parameter.

No measure quantity or property is of the slightest use in decision and in science, unless it
has a range quantity, i.e., an error, attached to it.
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Every measurement we make, and every parameter or value we derive requires an ERROR
ESTIMATE, a measure of range (expressed in terms of probability) that encompasses our belief of
the true value of the parameter.

No measure quantity or property is of the slightest use in decision and in science, unless it
has a range quantity, i.e., an error, attached to it.

Probability
IS @ numerical formalization of our degree or intensity of belief.

Kolmogorov axioms of probability:

1. any random event A has a probability prob(A) in [0,1]

2. the sure event has prob(A)=1

3. if A and B are exclusive events, then prob(A or B)=prob(A)+prob(B)
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Two events A and B are INDEPENDENT if the probability of one is unaffected by what we know
about the other: prob(A and B)=prob(A)prob(B)

IF independence does not hold, we should know the CONDITIONAL PROBABILITY, i.e., the
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IF there are several possibilities for event B (i.e., Bi):
/ 0o . v\
pob () = 37 prob (A | Bi) prob (Bi)
.’
Example: “A” might be a cosmological parameter of interest, while “Bi” are not of interest,

e.g., instrumental parameters. Knowing prob(Bi), we can get rid of them by summation (or
integration), a.k.a., marginalization.
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GOAL: infer how many red balls there are given what we extract



BAYES' THEOREM
Example 1

There are N red balls and M white balls in an urn: we know that N+M=10. We draw T=3 times

(putting the balls back after drawing them) and get R=2 red balls. How many red balls are there
in the urn?

GOAL: infer how many red balls there are given what we extract

red B N
white +red N + M

Probability of red ball:




BAYES' THEOREM
Example 1

There are N red balls and M white balls in an urn: we know that N+M=10. We draw T=3 times

(putting the balls back after drawing them) and get R=2 red balls. How many red balls are there
in the urn?

GOAL: infer how many red balls there are given what we extract

red B N
white +red N + M

Y
Probability of getting R red balls, N .
.e., the likelihood: prb U\\BB ‘—[2} [m> <N+M 5 S:Qﬁgﬁt'ion

Probability of red ball:




BAYES' THEOREM
Example 1

There are N red balls and M white balls in an urn: we know that N+M=10. We draw T=3 times

(putting the balls back after drawing them) and get R=2 red balls. How many red balls are there
in the urn?

GOAL: infer how many red balls there are given what we extract

red B N
white +red N + M

R
Probability of getting R red balls, N M |
u;O t?lelllilzlecl)ihggdl:ng A prok (A\BB = [{Z\) [ @ < Y 5 bimodal

distribution

Number of permutations of the R red balls amongst
the T draws

T

" (T -R)R! T(T—1)(T-2)..(T - R+1)/R!

Probability of red ball:




BAYES' THEOREM
Example 1

There are N red balls and M white balls in an urn: we know that N+M=10. We draw T=3 times

(putting the balls back after drawing them) and get R=2 red balls. How many red balls are there
in the urn?

GOAL: infer how many red balls there are given what we extract

red N

P ility of II: —
robability of red ba white +red ~ N+ M

R TR
Probability of getting R red balls, ;\ N M .
..e., the likelihood: P(b}: (MBB t R )[m Nt M bimodal

distribution

Number of permutations of the R red balls amongst ~ Prob that R

the T draws balls will be red
T

" (T -R)R! T(T—1)(T-2)..(T - R+1)/R!




BAYES' THEOREM
Example 1

There are N red balls and M white balls in an urn: we know that N+M=10. We draw T=3 times

(putting the balls back after drawing them) and get R=2 red balls. How many red balls are there
in the urn?

GOAL: infer how many red balls there are given what we extract

red N

P ility of II: =
robability of red ba white - red N + M

R TR
Probability of getting R red balls, ;\ N M .
..e., the likelihood: P(b}: (MBB t R )[m Nt M bimodal

distribution

Number of permutations of the R red balls amongst ~ Prob that R Prob that T-R balls
the T dr;ws balls will be red will not be red (i.e.,

- TR T(T — 1)(T —2)..(T — R+1)/R! will be white)




BAYES' THEOREM
Example 1

There are N red balls and M white balls in an urn: we know that N+M=10. We draw T=3 times

(putting the balls back after drawing them) and get R=2 red balls. How many red balls are there
in the urn?
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prob(B) = prior: start with a uniformly distributed N with N in [0,N+M]
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Bayes’ theorem + probability as a measure of belief allows us to answer the question: given
the data, what are the probabilities of the parameters contained in our statistical model?

NOTE: the prior is what we know apart from the data. Sometimes, this can have a dramatic
effect on our inferences. Sometimes, for the prior, we even need a “probability of a probability”.
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Calculate the supernova rate per century ( p) assuming we observe 4 supernovas on 10 centuries
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We ascribe a probability distribution to 0 , in itself a probability.
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These two priors reflect the fact that in most experiments, we are
expecting a yes or a no answer.

NOTE: Assigning priors when our knowledge is rather vague can be quite difficult. Some
obvious priors, uniform from -infinity to +infinity are NOT normalizable, hence they are trouble.

NOTE: How to characterize the posterior probability by a single number

1. Peak of the posterior probability (max[prob(BIA)])

1
2. Posterior mean < p >:/ p prob(p|data)dp
0

3. Unless the posterior distributions are very narrow, attempting to characterize them by a
single number is misleading. How to best characterize them depends on what is to be
done with the answer, which, in turn, depends on having a carefully posed question.
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It can be discrete or continuous

f(x) probability density
—> f(x)dx = probability of getting a number near x within a tiny range dx

If X is a continuous random variable, then f(x) is its probability density function, a.j.a., probability
distribution, when:
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3. f(x) is a single-valued non-negative number for all real x
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UNIFORM Distribution:




BIMODAL Distribution: The bimodal distribution gives the chance of n successes in N
trials, where the probability of a success at each trial is the
same ( 0 ) and successive trials are independent.

W) N-v1

NOTE: The bimodal distribution is the parent population of the Poisson and Gaussian distributions.



BIMODAL DISTRIBUTION
Example

Out of 100 clusters of galaxies, 10 contain a dominant central galaxy. We plan to check a
different sample of 30 galaxies’ clusters selected with X-ray observations. How many do we
expect to have a central dominant galaxy?

0 N bl R %
PRb (n) = (‘a@) ok ‘X;\ W%
) f WM |
|3 /\o0
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POISSON Distribution: From the bimodal distribution, with p << 1 (i.e., p — 0)
(i.e., very rare independent events) and a large number of trials

Appropriate to describe small samples from large populations
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The Poisson distribution plays its biggest role in the lives of astronomers via the photons with
which we measure emission from our chosen objects.

Poisson statistics governs the number of photons arriving during an exposure. The probability of

a photon arriving in a fixed internal of time is often small. The arrival of successive photons are
iIndependent, hence the Poisson distribution applies.
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The Gaussian distribution displays the characteristic bell shape and symmetry about the mean.
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Lorentzian Distribution
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Power Law distribution
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