ASSIGNMENT #1: due before TUESDAY 3/2

ASSIGNMENT #2: due before THURSDAY 3/4



Numerical Methods lll:
quadratures
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Quadratures = integration of functions

The integration of function has a long history in numerical analysis, basically because integrating is

much harder than calculating derivatives.

b
The problem is to calculate the integral [ = QOQ dx (‘\)

A
| can always rewrite (1) as a differential problem, i.e.:
d
d—y = f(x) with boundary conditions y(x =a) =0 and y(x =b) =1
T

Hereafter, we will consider the solution of (1) as the sum | = Z f(xz;)c; = quadrature

1

The name of the game is always the same: calculate | as accurate as possible with minimum
computational cost.
{5
All the methods we will discuss are for equally
spaced abscissas: f(x;) so that xi+1-xi=h for every i:

xi=xo+ih, for i=0,...,N-1 fi=f(x=x) \/[\/\ R N

Within this approach, there are two families of methods: )
1) CLOSED formulas make use of fo and fn-1 ;o

2) OPEN formulas do not make use of fo and fn-1, - il 1 }
i.e., they use fi,...fn-2. / X, XF’(;;}:W‘?&;

/
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CLOSED formulas:
There are a number of closed formulas, and we will see them in the order of increasing accuracy.

1) Trapezoidal formula st g

T [ o= Giet) B ol
(2

error of order of f’h3

Q: is there a function for which (2) is exact?
A: YES, a polynomial of order of 1 (i.e., a straight line) through 2 points ==> test it with f(x)=x+1

Q: What if we use 3 points? Can we get a formula that is exact for a polynomial of order 27?
A: YES, and even better!



2) Simpson formula

T= XSPCOAX " 2 [g‘(\)” %’fz*é fs} T CD(L\S‘?» :!{ <5)

X, IR —
™ { ‘ j“ Taylor expand f(x) around xi, X2, and Xs,
it v, P TN trying to get rid of all the error that you
. \‘ | can and you end up with this formula.
; )
[ > .
X X7 Yy

\
This is exact for a polynomial of order 3 included, because there is cancellation of error, i.e.,
we have chosen our coefficients so as to remove the O(h4) error term.

Q: How about a 4 point formula?
A: in this case, there is no cancellation of terms and | get Simpson’s 3/8 formula:

[ rmax=hgh+ohit i gh| 06O @

NOTE 1:in general, (4) is more accurate than (3) because usually f4 is smaller than {7, unless for
some pathological function (at fixed h).

NOTE 2: because both (3) and (4) have errors ~O(h®), Simpson’s formula with 3 points is generally
more efficient.



5) Bode’s formula: with 5 points

X

X0

' A P P s P AT P 7 4(6)
Fdx =[G fort Gohi+ G fat Gefst goh |+ 0075
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| can then write: ] = Z ]J(,Q) +O(R3 )

J

1=>"1Y +on°f")

J
1
1=3 1"+ 0 f¥)
J

and so on...



Following this logic, we can write extended formulas

Q: Why are these extended formulas useful?
A: They allow us to forget about the number of points and minimize computational cost.

Example: )
w12 gr¥3
Ixjat*f'lz - ml’\* f2+Q3\,\
] QA
A
— -3 | need to calculate f> twice, whereas

with the extended formulas only once.

6) Extended trapezoidal rule (*)

N | 3 |
PCX) dx = \«\[5'13( + <€2+»,,,4"€Nw‘. + é\%\\] + Q(Z}M'&*f‘

X

Ky

7) Simpson’s extended formula (*)

DS AL 2k ,

: y A - ~
[T - e « Wlie ¢ 20,20 . ko 20, 20
| L_ QO@QX {;5& 3 ¢°3 B 3% 312 3l The 2/3, 4/3 alternation
| continues throughout the

L Lo o | 4 interior of the evaluation
K 5;%\“»; N 35”\5:} B @<N )
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There is a beauty about the numerical implementation of the trapezoidal rule
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1
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1
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I
ot Ty
1
2

“h=L/4 O C : fs =

I, L L

(—‘|‘§f)+z(fd+fe) =

- %[ (Fat P+ 2 et 2 at o)
i
2

) T hfc + h(fd + fe)
l.e., the trapezoidal rule!
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In Num. Rec., there is QTRAP: this is the TRAPZD implementation until some specific degree
of accuracy is achieved.

In Num. Rec., QSIMP is the integration routine to be preferred.
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o X
b) it has upper (and lower) limits going to +/- infinity (e.g., Gaussian)
C) it has an integrable singularity at either limit, e.g., 513_1/2 at £ =20

d) it has an integrable singularity somewhere in the integration interval (or at an unknown position)

Closed formulas fail in the case of improper integrals. In this case, OPEN FORMULAS are a good
way out.

@)

NOTE: if an integral is infinite (/ r~tdx ) or does not exist in a limiting sense ( / cosxdz ), we do
1

— 00

not call it improper, we call it IMPOSSIBLE! No amount of clever algorithms will return a meaningful
answer to an ill-posed problem!!



Midpoint formula:

- | :“
JX& ‘?60 dx = \/x-[‘f\/z N ‘?3'/2,_'r €§/Z T oEa f‘)“é& N WQN"/&] K dr)"—)
X

Open extended formula:

TN 55 1 11 11 1 55
/ f(z)dx = h[2—4f2 - 6f3 + §f4 +fs+fet ..+ In-s+ [n-at ng—s — éfN—z + o /N +O(1/N*)



