ASSIGNMENT #1: due before TUESDAY 3/2

ASSIGNMENT #2: due before THURSDAY 3/4

Numerical Methods III: quadratures

The integration of function has a long history in numerical analysis, basically because integrating is much harder than calculating derivatives.

The problem is to calculate the integral

$$I = \int_{a}^{b} f(x) dx \quad (i)$$

The integration of function has a long history in numerical analysis, basically because integrating is much harder than calculating derivatives.

The problem is to calculate the integral $I = \int_{a}^{b} f(x) dx$ (1)

I can always rewrite (1) as a differential problem, i.e.:

 $\frac{dy}{dx} = f(x)$ with boundary conditions y(x = a) = 0 and y(x = b) = I

The integration of function has a long history in numerical analysis, basically because integrating is much harder than calculating derivatives.

The problem is to calculate the integral $I = \int_{a}^{b} f(x) dx$ (1)

I can always rewrite (1) as a differential problem, i.e.:

$$\frac{dy}{dx} = f(x)$$
 with boundary conditions $y(x = a) = 0$ and $y(x = b) = I$

Hereafter, we will consider the solution of (1) as the sum $I=\sum_i f(x_i)c_i \equiv {
m quadrature}$

The integration of function has a long history in numerical analysis, basically because integrating is much harder than calculating derivatives.

The problem is to calculate the integral $I = \int_{a}^{b} f(x) dx$ (1)

I can always rewrite (1) as a differential problem, i.e.:

$$\frac{dy}{dx} = f(x)$$
 with boundary conditions $y(x = a) = 0$ and $y(x = b) = I$

Hereafter, we will consider the solution of (1) as the sum $I = \sum_i f(x_i) c_i \equiv \mathrm{quadrature}$

The **name of the game** is always the same: calculate I as accurate as possible with minimum computational cost.

The integration of function has a long history in numerical analysis, basically because integrating is much harder than calculating derivatives.

The problem is to calculate the integral

$$I = \int_{a}^{b} f(x) dx \quad (1)$$

I can always rewrite (1) as a differential problem, i.e.:

$$\frac{dy}{dx} = f(x)$$
 with boundary conditions $y(x = a) = 0$ and $y(x = b) = I$

Hereafter, we will consider the solution of (1) as the sum $I = \sum_i f(x_i) c_i \equiv {
m quadrature}$

The **name of the game** is always the same: calculate I as accurate as possible with minimum computational cost.

All the methods we will discuss are for equally spaced abscissas: $f(x_i)$ so that x_{i+1} - x_i =h for every i:

$$x_i=x_0+ih$$
, for $i=0,...,N-1$ $f_i=f(x=x_i)$

The integration of function has a long history in numerical analysis, basically because integrating is much harder than calculating derivatives.

The problem is to calculate the integral

$$I = \int_{a}^{b} f(x) dx \quad (i)$$

I can always rewrite (1) as a differential problem, i.e.:

$$\frac{dy}{dx} = f(x)$$
 with boundary conditions $y(x = a) = 0$ and $y(x = b) = I$

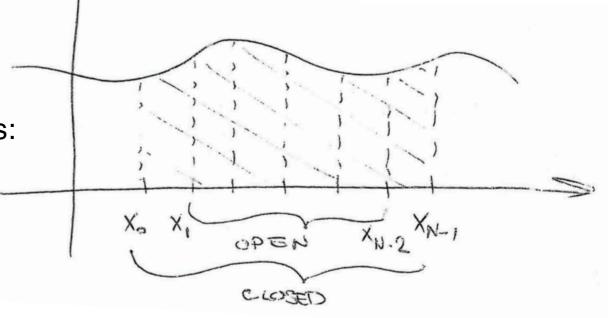
Hereafter, we will consider the solution of (1) as the sum $I = \sum_i f(x_i) c_i \equiv {
m quadrature}$

The **name of the game** is always the same: calculate I as accurate as possible with minimum computational cost.

All the methods we will discuss are for equally spaced abscissas: $f(x_i)$ so that x_{i+1} - x_i =h for every i: x_i = x_0 +ih, for i=0,...,N-1 f_i =f(x= $x_i)$

Within this approach, there are two families of methods:

- 1) CLOSED formulas make use of f₀ and f_{N-1}
- 2) **OPEN** formulas do not make use of f_0 and f_{N-1} , i.e., they use $f_1, \dots f_{N-2}$.



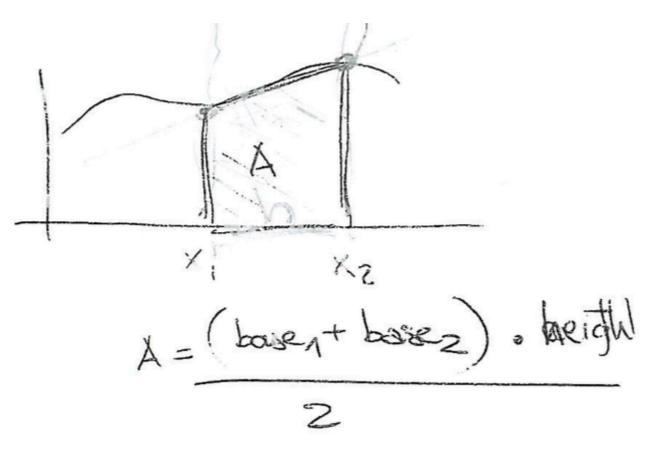
CLOSED formulas: There are a number of closed formulas, and we will see them in the order of increasing accuracy.

There are a number of closed formulas, and we will see them in the order of increasing accuracy.

1) Trapezoidal formula

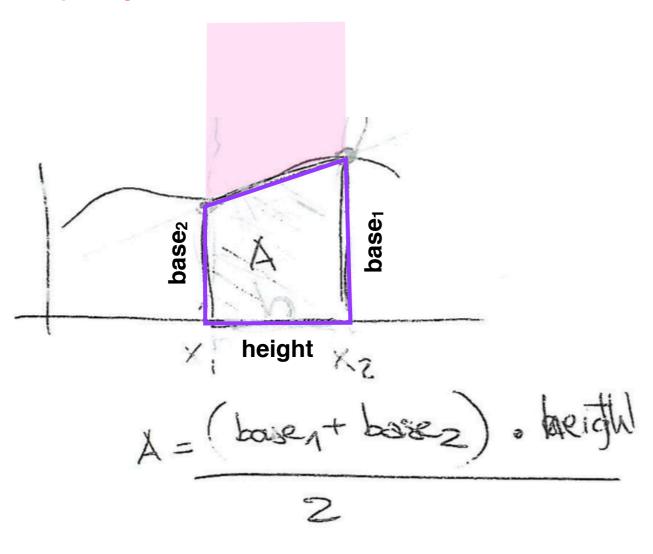
There are a number of closed formulas, and we will see them in the order of increasing accuracy.

1) Trapezoidal formula

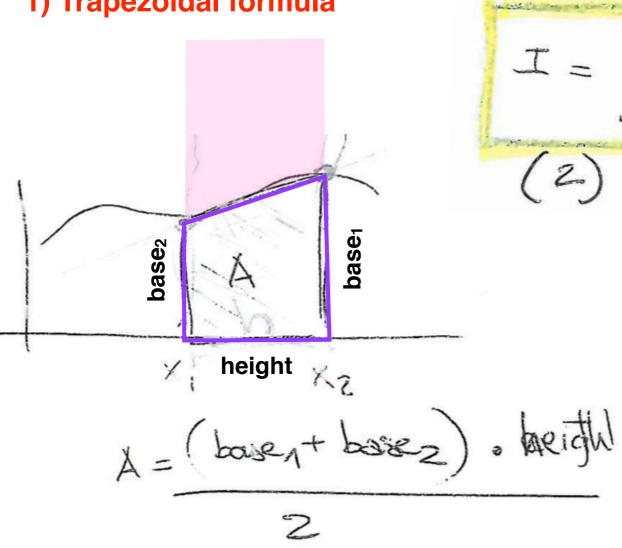


There are a number of closed formulas, and we will see them in the order of increasing accuracy.

1) Trapezoidal formula



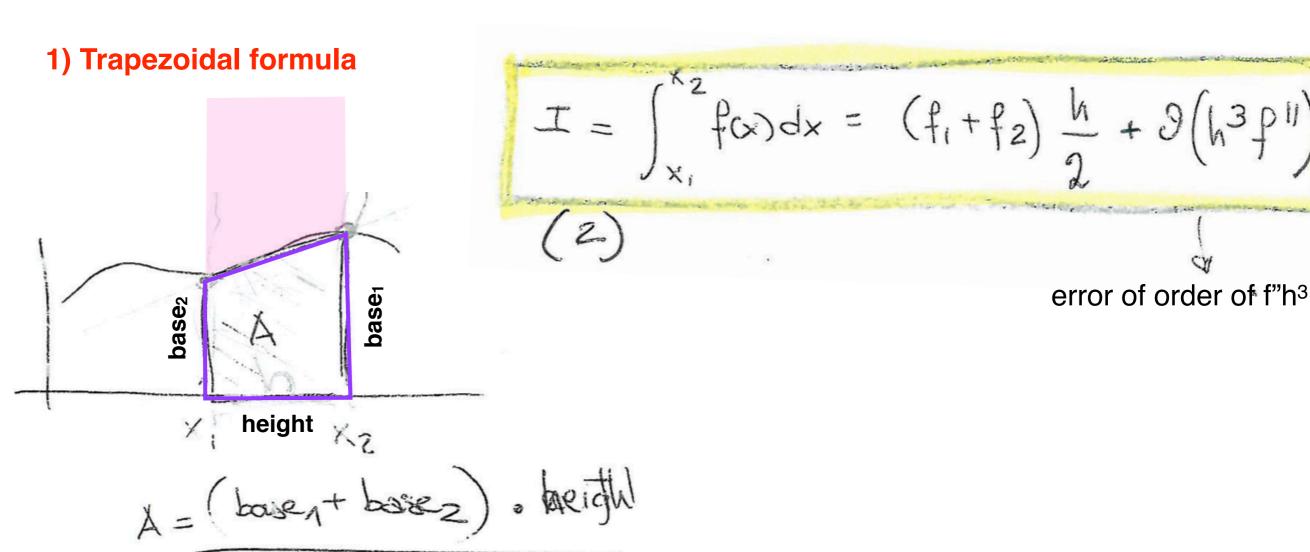
There are a number of closed formulas, and we will see them in the order of increasing accuracy.



$$I = \int_{x_{i}}^{x_{2}} f(x) dx = (f_{i} + f_{2}) \frac{h}{2} + 3(h^{3} f'')$$
(2)

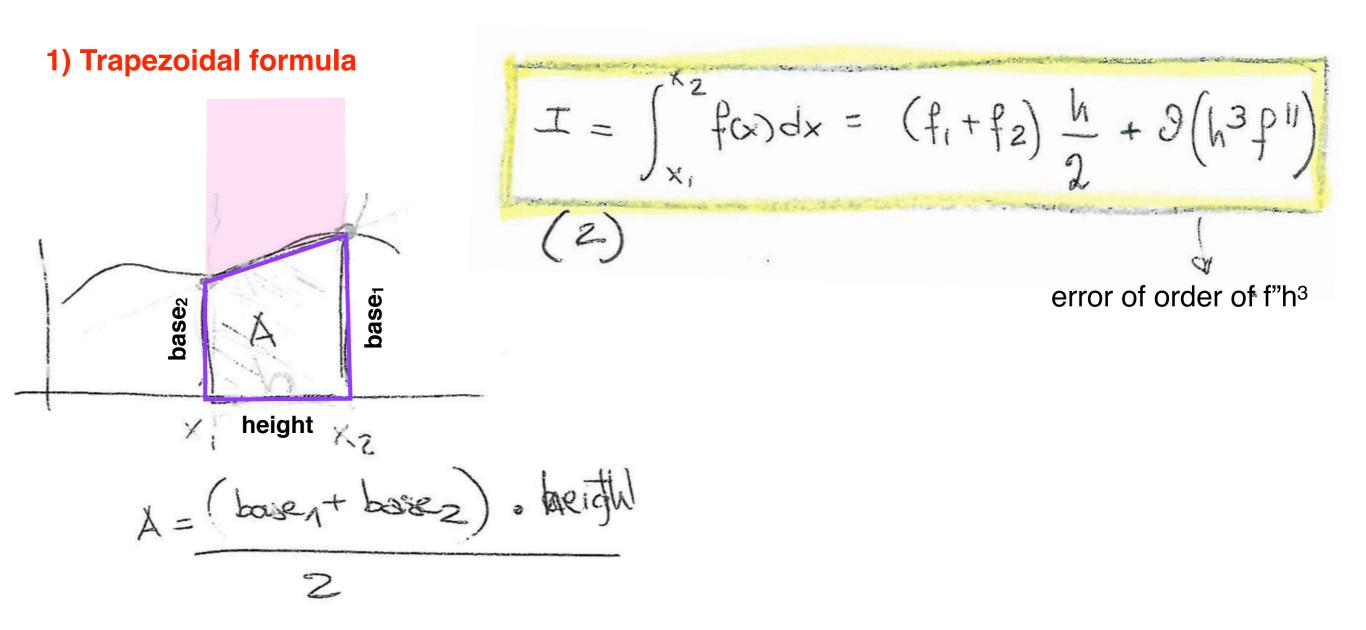
error of order of f"h3

There are a number of closed formulas, and we will see them in the order of increasing accuracy.



Q: is there a function for which (2) is exact?

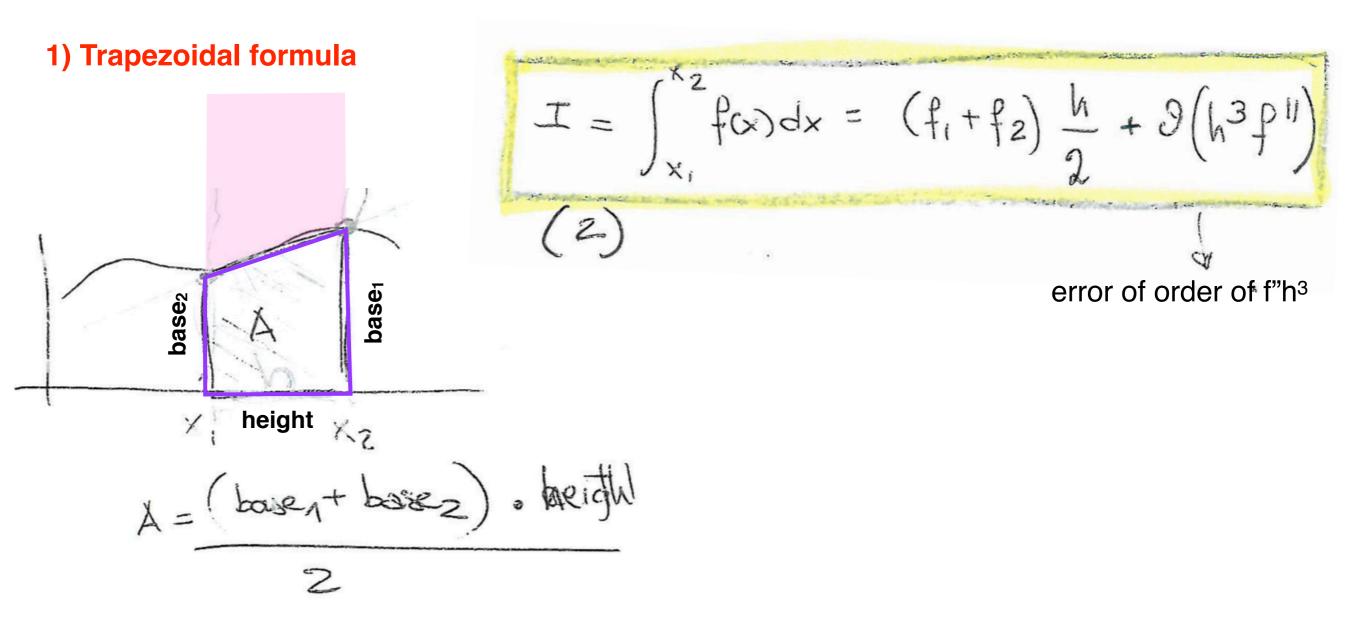
There are a number of closed formulas, and we will see them in the order of increasing accuracy.



Q: is there a function for which (2) is exact?

A: YES, a polynomial of order of 1 (i.e., a straight line) through 2 points ==> test it with f(x)=x+1

There are a number of closed formulas, and we will see them in the order of increasing accuracy.

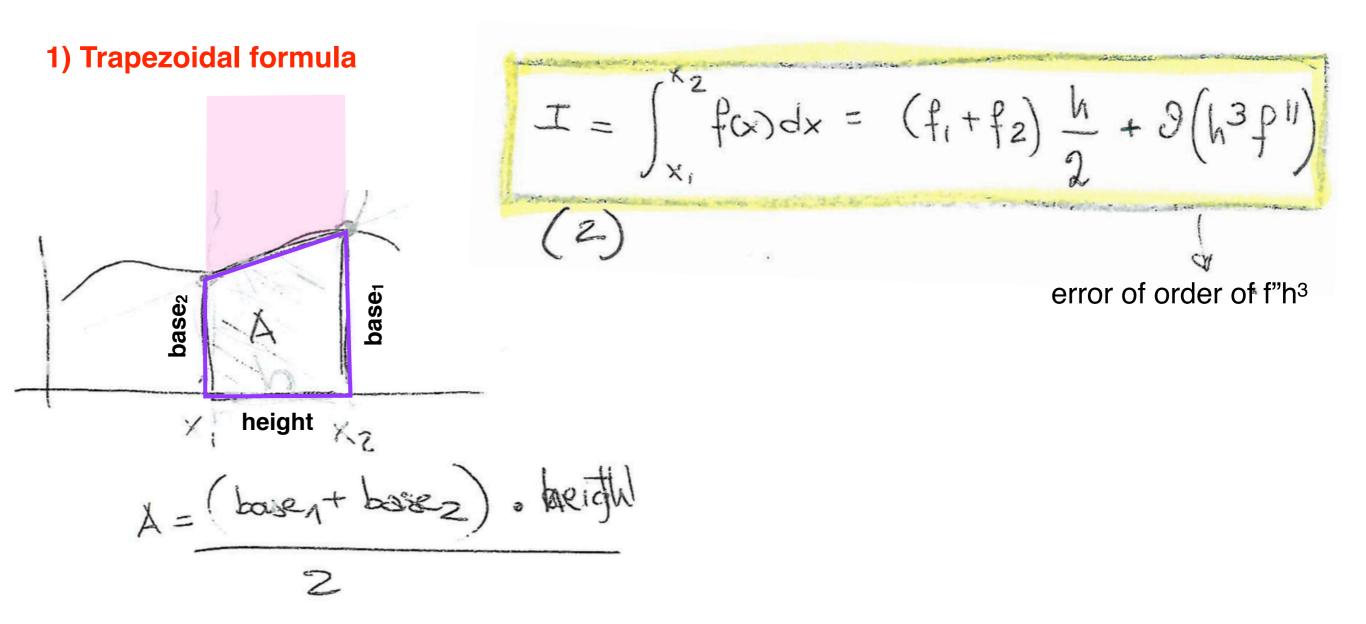


Q: is there a function for which (2) is exact?

A: YES, a polynomial of order of 1 (i.e., a straight line) through 2 points ==> test it with f(x)=x+1

Q: What if we use 3 points? Can we get a formula that is exact for a polynomial of order 2?

There are a number of closed formulas, and we will see them in the order of increasing accuracy.



Q: is there a function for which (2) is exact?

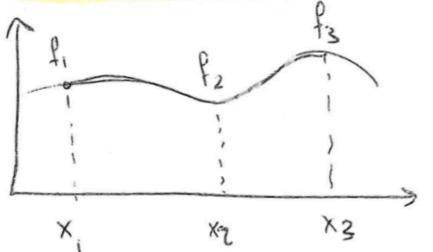
A: YES, a polynomial of order of 1 (i.e., a straight line) through 2 points ==> test it with f(x)=x+1

Q: What if we use 3 points? Can we get a formula that is exact for a polynomial of order 2?

A: YES, and even better!

2) Simpson formula

$$I = \int_{x_{i}}^{x_{3}} f(x) dx = h \left[\frac{1}{3} f_{1} + \frac{4}{3} f_{2} + \frac{1}{3} f_{3} \right] + \mathcal{O}(h^{5} f^{u})$$
 (3)



Taylor expand f(x) around x_1 , x_2 , and x_3 , trying to get rid of all the error that you can and you end up with this formula.

This is exact for a polynomial of order 3 included, because there is cancellation of error, i.e., we have chosen our coefficients so as to remove the O(h4) error term.

Q: How about a 4 point formula?

A: in this case, there is no cancellation of terms and I get Simpson's 3/8 formula:

$$\int_{x_0}^{x_3} f(x)dx = h \left[\frac{3}{8} f_0 + \frac{9}{8} f_1 + \frac{9}{8} f_2 + \frac{3}{8} f_3 \right] + O(h^5 f^{(4)})$$
 (4)

NOTE 1: in general, (4) is more accurate than (3) because usually $f^{(4)}$ is smaller than f", unless for some pathological function (at fixed h).

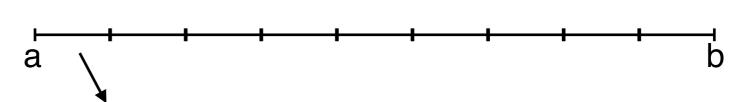
NOTE 2: because both (3) and (4) have errors ~O(h⁵), Simpson's formula with 3 points is generally more efficient.

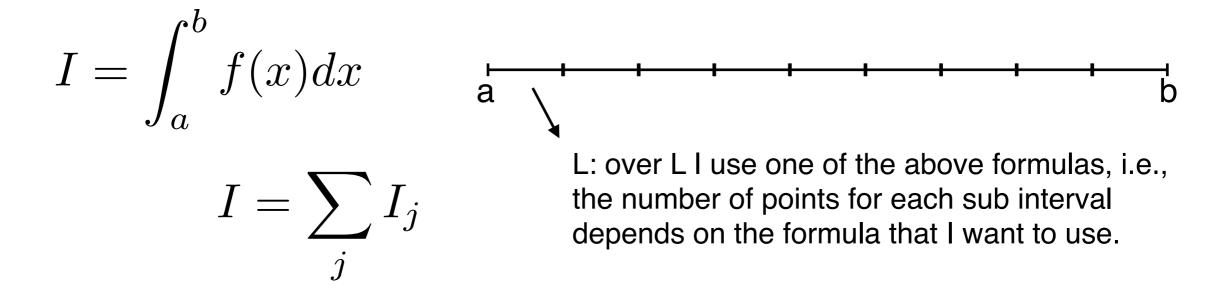
5) Bode's formula: with 5 points

$$\int_{x_0}^{x_4} f(x)dx = h \left[\frac{14}{45} f_0 + \frac{64}{45} f_1 + \frac{24}{45} f_2 + \frac{64}{45} f_3 + \frac{14}{45} f_4 \right] + O(h^7 f^{(6)})$$

$$I = \int_{a}^{b} f(x)dx$$

$$I = \sum_{j} I_{j}$$





In general, all of these formulas can be iterated, so that:

$$I = \int_{a}^{b} f(x)dx$$

$$I = \sum_{j} I_{j}$$

In general, all of these formulas can be iterated, so that:

$$I = \sum_{j} I_{j}$$
 where $I_{j} = \int_{x_{1j}}^{x_{2j,3j,4j}} f(x)dx$

$$I = \int_{a}^{b} f(x)dx$$

$$I = \sum_{j} I_{j}$$

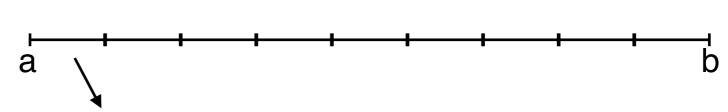
In general, all of these formulas can be iterated, so that:

$$I = \sum_{j} I_{j}$$
 where $I_{j} = \int_{x_{1j}}^{x_{2j,3j,4j}} f(x)dx$

Given L=b-a, I want to calculate the integral with N function evaluations; this sets h=L/N

$$I = \int_{a}^{b} f(x)dx$$

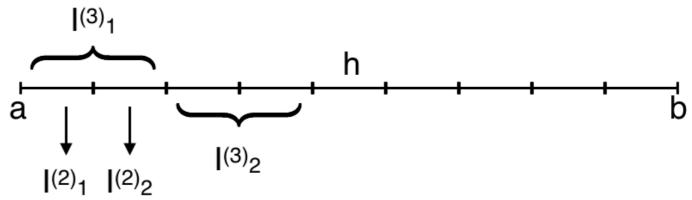
$$I = \sum I_j$$



In general, all of these formulas can be iterated, so that:

$$I = \sum_{j} I_{j}$$
 where $I_{j} = \int_{x_{1j}}^{x_{2j,3j,4j}} f(x)dx$

Given L=b-a, I want to calculate the integral with N function evaluations; this sets h=L/N



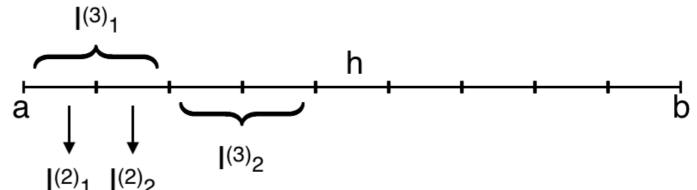
$$I = \int_{a}^{b} f(x)dx$$

$$I = \sum_{j} I_{j}$$

In general, all of these formulas can be iterated, so that:

$$I = \sum_{j} I_{j}$$
 where $I_{j} = \int_{x_{1j}}^{x_{2j,3j,4j}} f(x)dx$

Given L=b-a, I want to calculate the integral with N function evaluations; this sets h=L/N



I can then write:

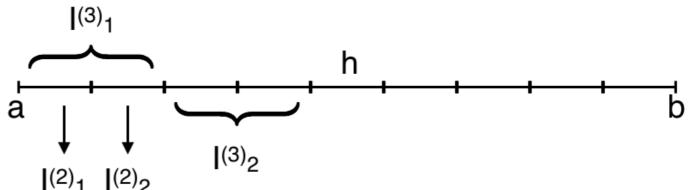
$$I = \int_{a}^{b} f(x)dx$$

$$I = \sum_{j} I_{j}$$

In general, all of these formulas can be iterated, so that:

$$I = \sum_{j} I_{j}$$
 where $I_{j} = \int_{x_{1j}}^{x_{2j,3j,4j}} f(x)dx$

Given L=b-a, I want to calculate the integral with N function evaluations; this sets h=L/N



I can then write:
$$I=\sum_j I_j^{(2)}+O(h^3f'')$$

$$I=\sum_j I_j^{(3)}+O(h^5f'')$$

$$I=\sum_j I_j^{(4)}+O(h^5f^{(4)})$$
 and so on...

Following this logic, we can write extended formulas

Q: Why are these extended formulas useful?

A: They allow us to forget about the number of points and minimize computational cost.

Example:



I need to calculate f₂ twice, whereas with the extended formulas only once.

6) Extended trapezoidal rule (*)

$$\int_{x_{1}}^{x_{N}} f(x) dx = h \left[\frac{1}{2}f_{1} + f_{2} + ... + f_{N-1} + \frac{1}{2}f_{N} \right] + O\left(\frac{3}{N^{\alpha}} \cdot f'' \right)$$

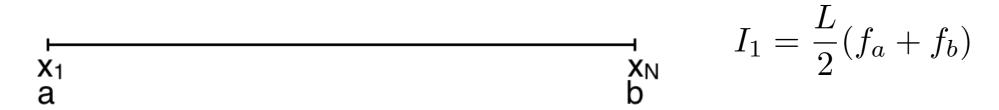
7) Simpson's extended formula (*)

$$T = \int_{x_{1}}^{x_{N}} f(x) dx = h \left[\frac{1}{3}f_{1} + \frac{4}{3}f_{2} + \frac{2}{3}f_{3} + \frac{4}{3}f_{4} + \frac{2}{3}f_{5} + ... + \frac{2}{3}f_{N-2} + \frac{4}{3}f_{N-1} + \frac{4}{3}f_{N-1} + \frac{4}{3}f_{N-1} + \frac{4}{3}f_{N-1} + \frac{4}{3}f_{N-1} + \frac{2}{3}f_{N-2} + \frac{2}{3}f_{N-2} + \frac{4}{3}f_{N-1} + \frac{4}{3}f_{N-1} + \frac{4}{3}f_{N-1} + \frac{2}{3}f_{N-2} + \frac{2}{$$

The 2/3, 4/3 alternation continues throughout the interior of the evaluation

$$\int_{x_1}^{x_2} f(x)dx = h\left[\frac{1}{2}f_1 + f_2 + \dots + f_{N-1} + \frac{1}{2}f_N\right]$$

$$\int_{x_1}^{x_2} f(x)dx = h\left[\frac{1}{2}f_1 + f_2 + \dots + f_{N-1} + \frac{1}{2}f_N\right]$$



$$\int_{x_1}^{x_2} f(x) dx = h \left[\frac{1}{2} f_1 + f_2 + \dots + f_{N-1} + \frac{1}{2} f_N \right]$$

$$\downarrow X_N$$

$$\downarrow X_$$

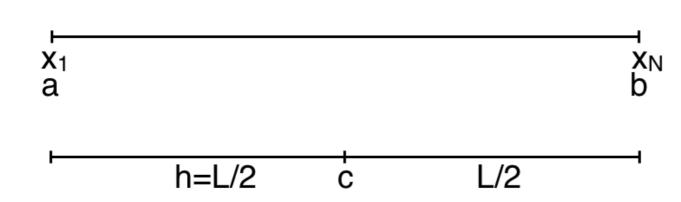
$$\int_{x_1}^{x_2} f(x)dx = h\left[\frac{1}{2}f_1 + f_2 + \dots + f_{N-1} + \frac{1}{2}f_N\right]$$

$$I_1 = rac{L}{2}(f_a + f_b)$$

$$I_2 = \frac{1}{2}(I_1 + Lf_c)$$

$$I_3 = \frac{I_2}{2} + \frac{Lf_d}{4} + \frac{Lf_e}{4} =$$

$$\int_{x_1}^{x_2} f(x)dx = h\left[\frac{1}{2}f_1 + f_2 + \dots + f_{N-1} + \frac{1}{2}f_N\right]$$



$$I_1 = \frac{L}{2}(f_a + f_b)$$

$$I_2 = \frac{1}{2}(I_1 + Lf_c)$$

$$\begin{split} I_3 &= \frac{I_2}{2} + \frac{Lf_d}{4} + \frac{Lf_e}{4} = \\ &= \frac{1}{2}(\frac{I_1}{2} + \frac{L}{2}f_c) + \frac{L}{4}(f_d + f_e) = \\ &= \frac{1}{2}[\frac{L}{4}(f_a + f_b)] + \frac{L}{4}f_c + \frac{L}{4}(f_d + f_e) \\ &= \frac{h}{2}(f_a + f_b) + hf_c + h(f_d + f_e) \\ &\text{i.e., the trapezoidal rule!} \end{split}$$

$$\int_{x_1}^{x_2} f(x)dx = h\left[\frac{1}{2}f_1 + f_2 + \dots + f_{N-1} + \frac{1}{2}f_N\right]$$

$$I_1 = rac{L}{2}(f_a + f_b)$$

$$I_2 = \frac{1}{2}(I_1 + Lf_c)$$

$$\begin{split} I_3 &= \frac{I_2}{2} + \frac{Lf_d}{4} + \frac{Lf_e}{4} = \\ &= \frac{1}{2}(\frac{I_1}{2} + \frac{L}{2}f_c) + \frac{L}{4}(f_d + f_e) = \\ &= \frac{1}{2}[\frac{L}{4}(f_a + f_b)] + \frac{L}{4}f_c + \frac{L}{4}(f_d + f_e) \\ &= \frac{h}{2}(f_a + f_b) + hf_c + h(f_d + f_e) \\ &\text{i.e., the trapezoidal rule!} \end{split}$$

$$I_4 = \frac{I_3}{2} + \frac{1}{8}L[f_f + f_g + f_h + f_i] = \dots = \frac{h}{2}(f_a + f_b) + h(f_c + f_d + f_e + f_f + f_g + f_h + f_i)$$

$$\int_{x_1}^{x_2} f(x) dx = h \Big[\frac{1}{2} f_1 + f_2 + \ldots + f_{N-1} + \frac{1}{2} f_N \Big]$$

$$\downarrow X_1 \qquad X_N \qquad I_1 = \frac{L}{2} (f_a + f_b)$$

$$\downarrow L_2 = \frac{1}{2} (I_1 + L f_c)$$

$$\downarrow I_3 = \frac{I_2}{2} + \frac{L f_d}{4} + \frac{L f_e}{4} =$$

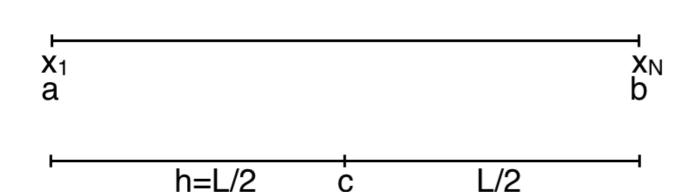
$$= \frac{1}{2} (\frac{I_1}{2} + \frac{L}{2} f_c) + \frac{L}{4} (f_d + f_e) =$$

$$= \frac{1}{2} [\frac{L}{4} (f_a + f_b)] + \frac{L}{4} f_c + \frac{L}{4} (f_d + f_e)$$

$$= \frac{h}{2} (f_a + f_b) + h f_c + h (f_d + f_e)$$
i.e., the trapezoidal rule!
$$I_4 = \frac{I_3}{2} + \frac{1}{8} L [f_f + f_g + f_h + f_i] = \ldots = \frac{h}{2} (f_a + f_b) + h (f_c + f_d + f_e + f_f + f_g + f_h + f_i)$$

Try this algorithm in the assignment

$$\int_{x_1}^{x_2} f(x)dx = h\left[\frac{1}{2}f_1 + f_2 + \dots + f_{N-1} + \frac{1}{2}f_N\right]$$



$$I_1 = \frac{L}{2}(f_a + f_b)$$

$$I_2 = \frac{1}{2}(I_1 + Lf_c)$$

$$I_{3} = \frac{I_{2}}{2} + \frac{Lf_{d}}{4} + \frac{Lf_{e}}{4} =$$

$$= \frac{1}{2} (\frac{I_{1}}{2} + \frac{L}{2}f_{c}) + \frac{L}{4}(f_{d} + f_{e}) =$$

$$= \frac{1}{2} [\frac{L}{4}(f_{a} + f_{b})] + \frac{L}{4}f_{c} + \frac{L}{4}(f_{d} + f_{e})$$

$$= \frac{h}{2} (f_{a} + f_{b}) + hf_{c} + h(f_{d} + f_{e})$$

$$I_4 = \frac{I_3}{2} + \frac{1}{8}L[f_f + f_g + f_h + f_i] = \dots = \frac{h}{2}(f_a + f_b) + h(f_c + f_d + f_e + f_f + f_g + f_h + f_i)$$

Try this algorithm in the assignment

In Num. Rec. this is TRAPZD

i.e., the trapezoidal rule!

In Num. Rec., there is QTRAP: this is the TRAPZD implementation until some specific degree of accuracy is achieved.

In Num. Rec., QSIMP is the integration routine to be preferred.

Examples:

a) the integrand is finite at one extreme but cannot be evaluated, e.g., $\frac{\sin x}{x}$ for $x \approx 0$

$$\int_0^1 \frac{\sin x}{x} dx \qquad ==> \text{trouble with closed formulas}$$

Examples:

a) the integrand is finite at one extreme but cannot be evaluated, e.g., $\frac{\sin x}{\cos x}$ for $x \approx 0$

$$\frac{\sin x}{x}$$
 for $x \approx 0$

$$\int_0^1 \frac{\sin x}{x} dx = > \text{trouble with closed formulas}$$

b) it has upper (and lower) limits going to +/- infinity (e.g., Gaussian)

Examples:

a) the integrand is finite at one extreme but cannot be evaluated, e.g., $\frac{\sin x}{x}$ for $x \approx 0$

$$\int_{0}^{1} \frac{\sin x}{x} dx = > \text{trouble with closed formulas}$$

- b) it has upper (and lower) limits going to +/- infinity (e.g., Gaussian)
- c) it has an integrable singularity at either limit, e.g., $x^{-1/2}$ at x=0

Examples:

a) the integrand is finite at one extreme but cannot be evaluated, e.g., $\frac{\sin x}{x}$ for $x \approx 0$

$$\int_{0}^{1} \frac{\sin x}{x} dx = > \text{trouble with closed formulas}$$

- b) it has upper (and lower) limits going to +/- infinity (e.g., Gaussian)
- c) it has an integrable singularity at either limit, e.g., $x^{-1/2}$ at x=0
- d) it has an integrable singularity somewhere in the integration interval (or at an unknown position)

Examples:

a) the integrand is finite at one extreme but cannot be evaluated, e.g., $\frac{\sin x}{x}$ for $x \approx 0$

$$\int_0^1 \frac{\sin x}{x} dx = > \text{trouble with closed formulas}$$

- b) it has upper (and lower) limits going to +/- infinity (e.g., Gaussian)
- c) it has an integrable singularity at either limit, e.g., $x^{-1/2}$ at x=0
- d) it has an integrable singularity somewhere in the integration interval (or at an unknown position)

Closed formulas fail in the case of improper integrals. In this case, **OPEN FORMULAS** are a good way out.

Examples:

- a) the integrand is finite at one extreme but cannot be evaluated, e.g., $\frac{\sin x}{x}$ for $x \approx 0$
 - $\int_0^1 \frac{\sin x}{x} dx = > \text{trouble with closed formulas}$
- b) it has upper (and lower) limits going to +/- infinity (e.g., Gaussian)
- c) it has an integrable singularity at either limit, e.g., $x^{-1/2}$ at x=0
- d) it has an integrable singularity somewhere in the integration interval (or at an unknown position)

Closed formulas fail in the case of improper integrals. In this case, **OPEN FORMULAS** are a good way out.

NOTE: if an integral is infinite ($\int_1^\infty x^{-1} dx$) or does not exist in a limiting sense ($\int_{-\infty}^\infty \cos x dx$), we do

not call it improper, we call it IMPOSSIBLE! No amount of clever algorithms will return a meaningful answer to an ill-posed problem!!

Midpoint formula:

Open extended formula:

$$\int_{x_1}^{x_N} f(x)dx = h\left[\frac{55}{24}f_2 - \frac{1}{6}f_3 + \frac{11}{8}f_4 + f_5 + f_6 + \dots + f_{N-5} + f_{N-4} + \frac{11}{8}f_{N-3} - \frac{1}{6}f_{N-2} + \frac{55}{24}f_{N-1}\right] + O(1/N^4)$$