Numerical Methods lI:
interpolation



The basic problem is well known: given the values (f1,fz,...,fn) of a function f=f(x) at the points
(X1,X2,...,XN), Where fi=f(x;), find:

1) f(a), where a inside [x1,xn]: interpolation

2) f(a), where a outside [x1,xn]: extrapolation

Both interpolation and extrapolation must model a function among or beyond the assigned set of
points. For this we need model functions that are sufficiently general to accommodate (e.g., to
approximate) a large class of functions.
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In other words, numerical interpolation and extrapolation is a

well-posed mathematical problem if the underlying function b /
Is smooth. If this is not the case, extrapolation and interpolation /

are not reliable. | ‘Wk““'



Theoretically, there are two steps: f N\

1) find an interpolating function at the assigned points
2) evaluate this function at the desired point xo

In practice, it is preferable to combine step 1) and 2):
f(xo) is evaluate directly from (f4,f2,...,fn) and (X1,X2,...,XN).
In general, this takes something like O(N2) operations. -
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In practice, it is preferable to combine step 1) and 2):
f(xo) is evaluate directly from (f4,f2,...,fn) and (X1,X2,...,XN).
In general, this takes something like O(N2) operations.
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B) GLOBAL.: coefficients are calculated globally (e.g., spline fit)

A) PROs: very simple and efficient; CONs: might introduce discontinuities in the derivatives
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complicated and computationally expensive

Let’s consider polynomials as modeling functions.
Q: what is a good order for polynomials? with a high polynomial
A: it depends on the function

Ex. i) function with sharp corners (i.e., large gradients)
—> low order polynomial is a good idea

Ex. ii) function that is smooth —> use high order polynomial
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the function is tabulated, then the
maximum order of the polynomial | can
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maximum order of the polynomial | can
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Lagrange’s Formula:

Given (x1,X2,...,XN); (f1,f2,...,fn) = (Y1,¥2,...,¥N)

y(x) _ (J) — $2)($ — 2?3)(56 — a?N) (CE — 331)(513 — :Ug)(a:' — CUN—l)

T = (= 22) @ 23) - (@— o) O () — 21) (a® — 22) - (4®) — T

point at which | want to interpolate

EXAMPLE: N=2 (straight line) (T1,91), (22, y2)
(x — x2) (x — x1) y=ar—+
ylr) = Y1 — Y2 = ty1 + uy2 _
( ) (-731 - 372) (£U1 — 5172) o = 270
L2 — X1
r—x r—x
where t = 2, u=1—-1t=— ! b=y —ax
L1 — L2 L1 — L2

Lagrange’s formula is fine mathematically, but it is not easy to implement numerically
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In other words, the final polynomial is just a linear combination of lower order polynomials:

(x — z4)p123 + (21 — T)p2s4

P1234(93) — cubic
ot (2 )pas + (22 — 2)
T — I T1 — T T — T4)P23 + (T2 — T)P34
p123($) — ( 3)p12 il ( ! )p23 p234(:1:) — ( parabola
L1 — I3 To — T4
pi2(x) = (@ = @2)p1 + (31 — 2)p: p3a(x) = (# = 24)ps + (x3 — 2)ps straight line
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Global interpolation methods: cubic spline [NOTE: you can call this function/routine when coding]

Given (x1,X2,...,xn) and (f1,f2,...,fn) = (y1,Y2,...,yN), ﬁy\« o
consider two points Xx;,Xj+1 and write a linear | % "

interpolation formula for there two points (this is a special
case of the general Lagrange interpolation formula):

y(z) = Ay; + Byj+1
A:A(m):ajjﬂ_x B=1-A=
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This has y”=0 in the interior of each interval (x;,Xj+1), and undefined or infinite y”
at x=x;. However, we want an interpolating formula that is smooth in y’, and
continuous in y”, both within and at the boundaries.

Suppose now we want to write an interpolating cubic using only the points (x;,Xj+1):
/!

y( ) ij + ByJ‘H T Cy T Dyj—l-l where:
N A=A(x), B=B(x),

—C(x3) D=D(x3
imagine these are C=C(x), D=D(x°),

) hence the name
tabulated (given) cubic spline
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calculated at x; and X;j+1.
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1
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A: to calculate them, let’s take the derivatives of the expression * (

—

dy / Yi+1 — Yj 34% —1 7 3B* -1 7
dx J ij_|_1 — ij 8 ( J+1 J)yj 6 ( J+1 J)y]—|—1
,_ d4 : A24 — A
since A'= —— = = _y 3 (211 — 25)°

%_ZCJ'_H—CEJ' dx _%— 6



We choose C and D so that y(xj)=y; and y(X;+1)=Yj+1, and the cubic polynomial has zero values when
calculated at x; and X;j+1.
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A: to calculate them, let’s take the derivatives of the expression *

dy yig1 —vy; 3A%—1 3B% -1
o= y = $J‘+1 — :1:]- — ; (241 — 25)y; 6 (%41 — 25)y7 4
J J
| , dA 1 ~ dB , , dC  3ACA - A ,
since A = o — il — 2, B = % = A C" = % — 6 (xj—l—l — CUJ)
d?y 6AA’ 6BB’
T3 = y' = — ; (Tj41 — x5)y; + 6 (541 — 25)yj 41 = Ayj + By,

since A(x;)=1 A(z;;1)=0 B(x;)=0 B(xj41)=1
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In other words, we don’t need to give any specific value to them, because they are not needed to
ensure that the interpolating function passes through y; and yj.1.
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» C(x)=0, C(xi+1)=0, D(x;)=0, D(x;+1)=0, i.e., we can give any values we wantto g7 and ¥,

In other words, we don’t need to give any specific value to them, because they are not needed to
ensure that the interpolating function passes through y; and yj.1.

However, there is a condition we can enforce: dy / / .
continuity of the first derivatives, i.e., % =Y ’a;j_ =Y |:zc;r GLOBAL condition
Computed using Computed using
Xj-1 and X; Xj+1 and X;
\ %
N .
\\%& . LOCALLY, for each [x;,Xj+1], | create a cubic,
3 but this way | end up with different splines for
' *\S‘ - & each interval (local condition).
. ) By setting the continuity of the first derivatives
N X§4 )XQ at x;, | have a GLOBAL spline (cubic spline)
m and a smooth function (global).
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Repeating this also for j=2, ..., N-1:
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Repeating this also for j=2, ..., N-1:
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— =2f } (set of equations) O
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— B ) (set of equations) O \
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o+ = P 3 (@1 = 2)yf + S (@01 = 25)Y54

J J /1 J+ J 7 J J.-n I+ J J
—) Yj—1 7T Yj T

Yj+1 = —
NxN
Repeating this also for j=2, ..., N-1: tridiagonal
matrix N

k tridiagonal system \ - -
() (set of equations) O
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/ Yi+1 — Yy 1 N, 1 L ) /"
Y|+ = — ~(Tj41 — x])yj + 6( j+1 i)Yj+1
S B B
I el Tjtl = Tj1 g L1 =5 [Yir — Y5 Yj— Y-
» J J Y+ J+ J y;/ 42 Yl = B .
6 J 3 6 Tiy1 —T; X — Tj_1
NxN \ N
Repeating this also for j=2, ..., N-1: tridiagonal coefficients
matrix N (right hand)
- [ ) \\O
: : ( ) tridiagonal system \ - =
— = f )') (set of equations) O




/ Yi —Y;j—1 1 7 1 7
— + —(x; —x;_ 1+ =(x; —x,;_ ;
Y |a;3 Ti— 21 6( j j 1)% 1 3( j j 1)%
/ Yi+1 — Y; 1 1 1 /1
Y ‘a;j Tit1— T, (Zj+1 J)y] 6( j+1 J)yj—l—l
Lj — Lj—1 Lj4+1 — Lj—1 Lj—1 — Ly Yj+1 — Yj Yj — Yj-1
* Yi_1+ Yy + Yjt1 = —
0 3 0 Ljt1 — Ly L 4 Lj—1
NxN \ N
Repeating this also for j=2, ..., N-1: tridiagonal coefficients

matrix N (right hand)

k tridiagonal system \
() (set of equations) O

N-2 equations in N unknowns y;'/=1,...,N , 1.e., each y’j Z T
is coupled only to its nearest neighbors at j+1 and j-1. Yj=1,...N
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/ Yi —Y;j—1 1 7 1 7
= + (T —2j—1)Y;_ 1+ z(x; —Tj-1)Y;
Y |a;3 Ti— 21 6( j j 1)% 1 3( j j 1)%
/ Yi+1 — Y; 1 /1 1 1/
= — —(2; Ti)Y: + =(Tjt1 — L)Y,
Y ’a;j Tit1 — 1 3( j+1 J)y] 6( j+1 J)yj—l—l
Lj — Lj—1 Lj4+1 — Lj—1 Lj—1 — Ly Yj+1 — Yj Yj — Yj—1
* Yi_1+ Yy + Yjt1 = —
0 3 0 L5441 £ g L j Lj—1
NxN \ N
Repeating this also for j=2, ..., N-1: tridiagonal coefficients
N (right hand)

matrix

tridiagonal system
(set of equations)

N-2 equations in N unknowns y;'/=1,...,N , 1.e., each y’|
Is coupled only to its nearest neighbors at j+1 and j-1.

Imposing the continuity of the first derivative translates into a
set of N-2 equations, which can be solved with linear algebra

techniques to yield y”s, ..., y’N-1

i




/ Yi —Yji—1 1 7 1 7,
Y |:1:j Ti— 21 6( j j 1)% 1 3( j j 1)%
/ Yji+1 — Yj 1 /1 1 7
Y ’a;j Tit1 — 1 3( j+1 J)y] 6( j+1 J)yj—l—l
J J J J J J J J J J
* Yi_1+ Yy + Yjt1 = —
0 3 0 Ljt1 — Ly Lj — Lj—-1
NxN \ N
Repeating this also for j=2, ..., N-1: tridiagonal coefficients
matrix N (right hand)
= ) \\O
| : ( >) tridiagonal system \ | =
— 2 ) (set of equations) O
. . /" , y T
N-2 equations in N unknowns Y;—=1... N ,l.e., eachy’

1/
is coupled only to its nearest neighbors at j+1 and j-1. Yj=1,...N

Imposing the continuity of the first derivative translates into a Solve the NxN linear
set of N-2 equations, which can be solved with linear algebra system of equations
techniques to yield y”, ..., y’N-1 using Cramer’s rule
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Q: What about y”1 and y”n, boundary conditions?

A: Two choices: 1) y’1 = y’n=0, i.e., natural spline; 2) calculate them from one-sided
differences, i.e., set y”1 and y’x to values calculated from equation N .
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differences, i.e., set y”1 and y’x to values calculated from equation N .

—> there is a 2-parameter family of possible solutions; for a unique solution,
you need to specify the boundary conditions y”’1 and y’.



Q: What about y”+ and y’n, boundary conditions?

A: Two choices: 1) y’1 = y’n=0, i.e., natural spline; 2) calculate them from one-sided
differences, i.e., set y”1 and y’x to values calculated from equation N .

‘ —> there is a 2-parameter family of possible solutions; for a unique solution,
you need to specify the boundary conditions y”1 and y”n.

IN GENERAL (except for the assignment), just use the function/routine
in the library for linear, quadratic, cubic, or cubic spline interpolations.



