Numerical Methods I: root finding

There are two basics data types:

- Integer: exact representation (within the allowed range, i.e., no approximation) and exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x B^{T-E}, with s "sign", M "mantissa" (aka, significand or coefficient), B "base", T "exponent", and E "byes".

Ex: $1.2345 = 12345 \times 10^{-4}$ 12345 = mantissa, 10 = base, -4 = exponent; all integers

There are two basics data types:

- Integer: exact representation (within the allowed range, i.e., no approximation) and exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x B^{T-E}, with s "sign", M "mantissa" (aka, significand or coefficient), B "base", T "exponent", and E "byes".

```
Ex: 1.2345 = 12345 \times 10^{-4}
 12345 = \text{mantissa}, 10 = \text{base}, -4 = \text{exponent}; all integers
```

Definitions:

1) E_m: machine accuracy (the smallest floating point number that can be added to 1.0 and produces something different from 1.0.

There are two basics data types:

- Integer: exact representation (within the allowed range, i.e., no approximation) and exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x B^{T-E}, with s "sign", M "mantissa" (aka, significand or coefficient), B "base", T "exponent", and E "byes".

```
Ex: 1.2345 = 12345 \times 10^{-4}
 12345 = \text{mantissa}, 10 = \text{base}, -4 = \text{exponent}; all integers
```

Definitions:

- 1) Em: machine accuracy (the smallest floating point number that can be added to 1.0 and produces something different from 1.0.
- 2) E_R: round-off error (error made in the operations between two FP#s). I always have an error related to the last significant digit in the mantissa.

Ex: $1.23 \times 1.27 = 1.578$, but the machine gives me 1.58

There are two basics data types:

- Integer: exact representation (within the allowed range, i.e., no approximation) and exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x B^{T-E}, with s "sign", M "mantissa" (aka, significand or coefficient), B "base", T "exponent", and E "byes".

Ex: $1.2345 = 12345 \times 10^{-4}$ 12345 = mantissa, 10 = base, -4 = exponent; all integers

Definitions:

- 1) Em: machine accuracy (the smallest floating point number that can be added to 1.0 and produces something different from 1.0.
- 2) E_R: round-off error (error made in the operations between two FP#s). I always have an error related to the last significant digit in the mantissa.

Ex: $1.23 \times 1.27 = 1.578$, but the machine gives me 1.58

Take N operations, final error is: $E_{\mathrm{final}} pprox \sqrt{N} imes E_{\mathrm{R}}$

i.e., the more one plays with numbers, or the more operations one does, the larger the error will be

There are two basics data types:

- Integer: exact representation (within the allowed range, i.e., no approximation) and exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x B^{T-E}, with s "sign", M "mantissa" (aka, significand or coefficient), B "base", T "exponent", and E "byes".

Ex: $1.2345 = 12345 \times 10^{-4}$ 12345 = mantissa, 10 = base, -4 = exponent; all integers

Definitions:

- 1) Em: machine accuracy (the smallest floating point number that can be added to 1.0 and produces something different from 1.0.
- 2) E_R: round-off error (error made in the operations between two FP#s). I always have an error related to the last significant digit in the mantissa.

Ex: $1.23 \times 1.27 = 1.578$, but the machine gives me 1.58

Take N operations, final error is: $~E_{final} pprox \sqrt{N} imes E_{R}$

i.e., the more one plays with numbers, or the more operations one does, the larger the error will be

3) E_T: truncation error (completely dependent on the programmer)

 $E_T \equiv \text{(numeric solution of a problem)} - \text{(exact solution of the problem)}$

There are two basics data types:

- Integer: exact representation (within the allowed range, i.e., no approximation) and exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x B^{T-E}, with s "sign", M "mantissa" (aka, significand or coefficient), B "base", T "exponent", and E "byes".

Ex: $1.2345 = 12345 \times 10^{-4}$

12345 = mantissa, 10 = base, -4 = exponent; all integers

Definitions:

- E_m: machine accuracy (the smallest floating point number that can be added to 1.0 and produces something different from 1.0.
- 2) E_R: round-off error (error made in the operations between two FP#s). I always have an error related to the last significant digit in the mantissa.

Ex: $1.23 \times 1.27 = 1.578$, but the machine gives me 1.58

Take N operations, final error is: $~E_{final} pprox \sqrt{N} imes E_{R}$

i.e., the more one plays with numbers, or the more operations one does, the larger the error will be

3) E_T: truncation error (completely dependent on the programmer)

 $E_T \equiv \text{(numeric solution of a problem)} - \text{(exact solution of the problem)}$

Ex.:
$$f(x) = f(x_0) + f'(x_0)\Delta x + f''(x_0)\frac{\Delta x^2}{2} + o(\Delta x^3)$$

There are two basics data types:

- Integer: exact representation (within the allowed range, i.e., no approximation) and exact arithmetics (i.e., no division)
- **Floating points numbers (FP#)**: s x M x B^{T-E} , with s "sign", M "mantissa" (aka, significand or coefficient), B "base", T "exponent", and E "byes".

Ex: $1.2345 = 12345 \times 10^{-4}$

12345 = mantissa, 10 = base, -4 = exponent; all integers

Definitions:

- E_m: machine accuracy (the smallest floating point number that can be added to 1.0 and produces something different from 1.0.
- 2) E_R: round-off error (error made in the operations between two FP#s). I always have an error related to the last significant digit in the mantissa.

Ex: $1.23 \times 1.27 = 1.578$, but the machine gives me 1.58

Take N operations, final error is: $~E_{final} pprox \sqrt{N} imes E_{R}$

i.e., the more one plays with numbers, or the more operations one does, the larger the error will be

3) E_T: truncation error (completely dependent on the programmer)

 $E_T \equiv \text{(numeric solution of a problem)} - \text{(exact solution of the problem)}$

Ex.:
$$f(x) = f(x_0) + f'(x_0)\Delta x + f''(x_0)\frac{\Delta x^2}{2} + o(\Delta x^3)$$

ROOT FINDING: \bar{x} so that $\bar{f}(\bar{x}) = 0$ m-functions n-independent variables

There are no good general methods for solving systems of more than one non-linear equation.

Things are much simpler if m=n=1.

Except for linear problems, root finding proceeds by iteration, i.e., we start with a suitable trial value and use an algorithm that will improve it until satisfaction.

There are no good general methods for solving systems of more than one non-linear equation.

Things are much simpler if m=n=1.

Except for linear problems, root finding proceeds by iteration, i.e., we start with a suitable trial value and use an algorithm that will improve it until satisfaction.

There are no good general methods for solving systems of more than one non-linear equation.

Things are much simpler if m=n=1.

Except for linear problems, root finding proceeds by iteration, i.e., we start with a suitable trial value and use an algorithm that will improve it until satisfaction.

Rule of thumb: first of all, make sure there is a root (plot the function!)

Let be $f=f(x), \ x\in \mathbb{R}$

then x_0 is bracketed in $[x_1,x_2]$ if $f(x_1)f(x_2)<0$

Let be
$$f=f(x), x\in \mathbb{R}$$

then x_0 is bracketed in $[x_1,x_2]$ if $f(x_1)f(x_2)<0$

Note: $f(x_1)f(x_2)<0$ is not a sufficient nor a necessary condition of the existence of the root.

Let be
$$f=f(x), x \in \mathbb{R}$$

then x_0 is bracketed in $[x_1,x_2]$ if $f(x_1)f(x_2)<0$

Note: $f(x_1)f(x_2)<0$ is not a sufficient nor a necessary condition of the existence of the root.

Let be
$$f = f(x), x \in \mathbb{R}$$

then x_0 is bracketed in $[x_1,x_2]$ if $f(x_1)f(x_2)<0$

Note: $f(x_1)f(x_2)<0$ is not a sufficient nor a necessary condition of the existence of the root.

 $f(x_1)f(x_2)>0$ even though I have two roots

=> not a sufficient condition

Let be
$$f = f(x), x \in \mathbb{R}$$

then x_0 is bracketed in $[x_1,x_2]$ if $f(x_1)f(x_2)<0$

Note: $f(x_1)f(x_2)<0$ is not a sufficient nor a necessary condition of the existence of the root.

 $f(x_1)f(x_2)>0$ even though I have two roots

=> not a sufficient condition

 $f(x_1)f(x_2)$ <0 even though there is no root

=> not a necessary condition

Algorithm for bracketing:

Given an interval $[x_1,x_2]$ bracketing x_0 , we evaluate the function of the mid-point and we use it to replace one of the previous limits (in particular the one which still satisfies $f_1f(x_n)<0$.

Given an interval $[x_1,x_2]$ bracketing x_0 , we evaluate the function of the mid-point and we use it to replace one of the previous limits (in particular the one which still satisfies $f_1f(x_n)<0$.

Given an interval $[x_1,x_2]$ bracketing x_0 , we evaluate the function of the mid-point and we use it to replace one of the previous limits (in particular the one which still satisfies $f_1f(x_n)<0$.

Given an interval $[x_1,x_2]$ bracketing x_0 , we evaluate the function of the mid-point and we use it to replace one of the previous limits (in particular the one which still satisfies $f_1f(x_n)<0$.

Pros: it cannot fail

Cons: not efficient (i.e., not quick)

Given an interval $[x_1,x_2]$ bracketing x_0 , we evaluate the function of the mid-point and we use it to replace one of the previous limits (in particular the one which still satisfies $f_1f(x_n)<0$.

Pros: it cannot fail

Cons: not efficient (i.e., not quick)

Set En the deviation from x0 at each iteration: $E_n = \frac{1}{2}E_{n-1} = 2^{-n}E_0$

Given an interval $[x_1,x_2]$ bracketing x_0 , we evaluate the function of the mid-point and we use it to replace one of the previous limits (in particular the one which still satisfies $f_1f(x_n)<0$.

Pros: it cannot fail

Cons: not efficient (i.e., not quick)

Set En the deviation from x0 at each iteration: $E_n = \frac{1}{2}E_{n-1} = 2^{-n}E_0$

If you fix E_0 (initial error) and E_F is the final error, the number of steps N necessary to achieve E_F => $N = log_2 \, \frac{E_F}{E_0}$

Given an interval $[x_1,x_2]$ bracketing x_0 , we evaluate the function of the mid-point and we use it to replace one of the previous limits (in particular the one which still satisfies $f_1f(x_n)<0$.

Pros: it cannot fail

Cons: not efficient (i.e., not quick)

Set En the deviation from x0 at each iteration: $E_n = \frac{1}{2}E_{n-1} = 2^{-n}E_0$

If you fix E_0 (initial error) and E_F is the final error, the number of steps N necessary to achieve E_F => $N = log_2 \, \frac{E_F}{E_0}$

Note: E_F=0 is not possible, since N would be infinity

Secant method:

Let x_0 be a root of f(x) and x_0 in [a,b]

a) approximate the function as a line through $f(x_1)$ and $f(x_2)$: ---

$$\frac{f(\tilde{x}_0) - f(x_1)}{\tilde{x}_0 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

b)
$$f(\tilde{x}_0)\approx 0$$
 then $\tilde{x}_0=x_1+\underbrace{\left(x_2-x_1\right)\frac{f(x_1)}{f(x_1)-f(x_2)}}$ new best guess correction previous best guess

c) iterate by using \widetilde{x}_0 instead of \textbf{x}_{1} or \textbf{x}_{2}

NOTE: this method is more efficient than bisection, i.e., after many iterations, you are getting faster and faster to the solution with the secant method.

CAVEAT: the secant method does not bother checking whether the root is always bracketed, i.e., it can fail

To avoid failure, one can use the **false positive method**.

False positive method:

basically, this is the secant method with a check on the cross product

a) x_0 in $[x_1,x_2]$, $f(x_1)<0$ and $f(x_2)>0$

b) evaluate
$$\tilde{\mathbf{x}}_0 = \mathbf{x}_1 + (\mathbf{x}_2 - \mathbf{x}_1) \frac{\mathbf{f}(\mathbf{x}_1)}{\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_2)}$$

c) check: if $\ f(\tilde x_0)f(x_2)<0$, the retain x2; if $\ f(\tilde x_0)f(x_2)>0$, then retain x1

NOTE: the false positive method is a bit slower (because of the check), but more secure.

NOTE: the secant / false positive methods can fail miserably; in this sample, they would be very slow.

Brent's method: standard (fast and safe)

The super-linear (fast) convergence rate is achieved by using an inverse quadratic interpolation among 3 points and estimating the root as the place where the interpolating function vanishes.

This method provides the certainty of the bisection method with the speed of the secant method.

a)
$$(x_1,f(x_1)), (x_2,f(x_2)), (x_3,f(x_3))$$

b)
$$\tilde{x}_0 = x_2 + \frac{P}{Q}$$
 with $P=S[T(R-T)(x_3-x_1)-(1-R)(x_2-x_1)]$ $Q=(T-1)(R-1)(S-1)$ $R=f(x_2)/f(x_3), S=f(x_2)/f(x_1), T=f(x_1)/f(x_3)$

c) IF $|f(\tilde{x}_0)| - E_F < 0$ then you are getting close to the tolerance (good enough, happy); otherwise, iterate

Newton-Raphson method:

Let f be a function with known derivative

Consider the point $\, \bar{x} \,$ and calculate $\, f'(\bar{x}) \,$

Taylor expand around \bar{X} :

$$f(\tilde{x}_0) = f(\bar{x}) - f'(\bar{x})(\bar{x} - \tilde{x}_0) + o((\bar{x} - \tilde{x}_0)^2)$$

$$f(\tilde{\mathbf{x}}_0) = f(\bar{\mathbf{x}}) - f'(\bar{\mathbf{x}})(\bar{\mathbf{x}} - \tilde{\mathbf{x}}_0) + o((\bar{x} - \tilde{x}_0)^2)$$

$$f(\tilde{\mathbf{x}}_0) = 0 \implies \tilde{\mathbf{x}}_0 = \bar{\mathbf{x}} - \frac{f(\bar{\mathbf{x}})}{f'(\bar{\mathbf{x}})} \quad \text{IF } |f(\tilde{\mathbf{x}}_0)| < E_F \text{ then stop, otherwise set } \bar{\mathbf{x}} = \tilde{\mathbf{x}}_0 \text{ and reiterate.}$$

Newton-Raphson method:

Let f be a function with known derivative

Consider the point $\, \bar{x} \,$ and calculate $\, f'(\bar{x}) \,$

Taylor expand around \overline{X} :

$$f(\tilde{x}_0) = f(\bar{x}) - f'(\bar{x})(\bar{x} - \tilde{x}_0) + o((\bar{x} - \tilde{x}_0)^2)$$

$$\begin{split} &f(\tilde{\mathbf{x}}_0) = f(\bar{\mathbf{x}}) - f'(\bar{\mathbf{x}})(\bar{\mathbf{x}} - \tilde{\mathbf{x}}_0) + o((\bar{x} - \tilde{x}_0)^2) \\ &f(\tilde{\mathbf{x}}_0) = 0 \implies \tilde{\mathbf{x}}_0 = \bar{\mathbf{x}} - \frac{f(\bar{\mathbf{x}})}{f'(\bar{\mathbf{x}})} \quad \text{IF } |f(\tilde{\mathbf{x}}_0)| < E_F \quad \text{then stop, otherwise} \\ &\text{set } \bar{\mathbf{x}} = \tilde{\mathbf{x}}_0 \quad \text{and reiterate.} \end{split}$$

IF
$$|f(\tilde{x}_0)| < E_F$$
 then stop, otherwise set $\bar{x} = \tilde{x}_0$ and reiterate.

This method is very efficient, but it can fail miserably:

It fails miserably because the derivative is parallel to x (no intersection with the x axis)

i.e., loop or very slowly

Newton-Raphson method:

Let f be a function with known derivative

Consider the point $\, \bar{x} \,$ and calculate $\, f'(\bar{x}) \,$

Taylor expand around \overline{X} :

$$f(\tilde{x}_0) = f(\bar{x}) - f'(\bar{x})(\bar{x} - \tilde{x}_0) + o((\bar{x} - \tilde{x}_0)^2)$$

$$f(\tilde{\mathbf{x}}_0) = f(\bar{\mathbf{x}}) - f'(\bar{\mathbf{x}})(\bar{\mathbf{x}} - \tilde{\mathbf{x}}_0) + o((\bar{x} - \tilde{x}_0)^2)$$

$$f(\tilde{\mathbf{x}}_0) = 0 \implies \tilde{\mathbf{x}}_0 = \bar{\mathbf{x}} - \frac{f(\bar{\mathbf{x}})}{f'(\bar{\mathbf{x}})} \quad \text{IF } |f(\tilde{\mathbf{x}}_0)| < E_F \text{ then stop, otherwise set } \bar{\mathbf{x}} = \tilde{\mathbf{x}}_0 \text{ and reiterate.}$$

IF
$$|f(\tilde{x}_0)| < E_F$$
 then stop, otherwise set $\bar{x} = \tilde{x}_0$ and reiterate.

This method is very efficient, but it can fail miserably:

It fails miserably because the derivative is parallel to x (no intersection with the x axis)

i.e., loop or very slowly

This method should be used with care, and only if you know well your function

SUMMARY:

Use Brent's method as standard (fast and safe)
Use Newton-Raphson method only for certain functions (e.g., parabola)

ALWAYS CHECK THE CODE with a test function:

 $y=x^2-x = x(x-1)$, with roots $x_{0,1}=0$ and $x_{0,2}=1$