Numerical Methods |:
root finding
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There are no good general methods for solving systems of more than one non-linear equation.
Things are much simpler if m=n=1.

Except for linear problems, root finding proceeds by iteration, i.e., we start with a suitable trial
value and use an algorithm that will improve it until satisfaction.
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Rule of thumb: first of all, make sure there is a root (plot the function!)
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Algorithm for bracketing:
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Bisection:

Given an interval [x1,x2] bracketing xo, we evaluate the function of the mid-point and we use it
to replace one of the previous limits (in particular the one which still satisfies f1f(xn)<O.
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IF f1f(x3)<0 then | can throw away x2 because X3z is closer to Xo.

Pros: it cannot falil
Cons: not efficient (i.e., not quick)

1

Set En the deviation from xo at each iteration: k., — —F 1 = 27 "E,

If you fix Eo (initial error) and Er is the final error, EF
the number of steps N necessary to achieve ErF => N — 10g2 E_
0

Note: EF=0 is not possible, since N would be infinity



Secant method:
Let xo be a root of f(x) and X in [a,b]

a) approximate the function as a line through f(x1) and f(x2): -

f(xo) —f(x1)  f(x2) — f(x1)

X — X1 X9 — X1

b) f(f(o) ~ (0 then Xg = X1 + (Xg — Xl)

I f(x1) — f(x2)

new best guess \

correction

previous best guess

c) iterate by using X instead of x1 or x2

NOTE: this method is more efficient than bisection, i.e., after many iterations, you are getting
faster and faster to the solution with the secant method.

CAVEAT: the secant method does not bother checking whether the root is always bracketed,
l.e., it can fail

To avoid failure, one can use the false positive method.



False positive method:
basically, this is the secant method with a check on the cross product

a) Xo in [x1,x2], f(x1)<0 and f(x2)>0

f(x1)
f(x1) — f(x2)

c) check: if f(Xg)f(x2) < 0, the retain xz; if f(Xg)f(x2) > 0, then retain x;

b) evaluate }20 = X1 + (X2 — X1)

NOTE: the false positive method is a bit slower (because of the check), but more secure.

NOTE: the secant / false positive methods can falil
miserably; in this sample, they would be very slow.




Brent’s method: standard (fast and safe)

The super-linear (fast) convergence rate is achieved by using an inverse quadratic interpolation
among 3 points and estimating the root as the place where the interpolating function vanishes.

This method provides the certainty of the bisection method with the speed of the secant method.

a) (x1,f(x1)), (x2,{(x2)), (x3,(x3))

P
b) Xp = X9 + — with P=S[T(R-T)(x3-X1)-(1-R)(X2-X1)]
Q Q=(T-1)(R-1)
R

c) IF ‘f(f{o)| — EF < () then you are getting close to the tolerance (good enough, happy);
otherwise, iterate



Newton-Raphson method:
Let f be a function with known derivative |

_ ] / —
Consider the point X and calculate f(X)

/—/"" I

Taylor expand around X :

f(Xo) = f(x) — f/(?_()( —Xo) + o((Z — &p)?)
_ N (69

f(XQ) =0 - X0 —

IF |f(X0)| < Er then stop, otherwise
(%) set X = X and reiterate.
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Let f be a function with known derivative

: : — ! (=
Consider the point X and calculate f(X)

amm—

Taylor expand around X :
f(X0) = f(%) — f'(X)(X — %o) + o((Z — T0)*)
f(}zg) = () =P xX)g=X—
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S It fails miserably because the derivative is
Ve . . . .
parallel to x (no intersection with the x axis)

This method is
very efficient, but it | |
can fail miserably: fd e N e

l.e., loop or very slowly
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Let f be a function with known derivative

oo SISO

: : — ! (=
Consider the point X and calculate f(X)

Taylor expand around X :

amm—

f(%0) = f(x) — £'(%)(x — %o) + o((z — Z0)*)

- . o f(x
f(Xg) =0 = Xg =X — o _) IF |f(X0)] < Er then stop, otherwise
(X) set X = X and reiterate.

This method is
very efficient, but it

It fails miserably because the derivative is
can fail miserably:

parallel to x (no intersection with the x axis)

/N s, i.e., loop or very slowly

- This method should be used with care,
7 and only if you know well your function



SUMMARY:

Use Brent’s method as standard (fast and safe)
Use Newton-Raphson method only for certain functions (e.g., parabola)

ALWAYS CHECK THE CODE with a test function:
y=x2-X = X(x-1), with roots x0,1=0 and Xo 2=1



