Numerical Methods |:
root finding

Computers store numbers with a FINITE number of digits

Computers store numbers with a FINITE number of digits

There are two basics data types:
- Integer: exact representation (within the allowed range, i.e., no approximation) and

exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x BT-E | with s “sign”, M “mantissa” (aka,
significand or coefficient), B “base”, T “exponent”, and E “byes”.
Ex: 1.2345 = 12345 x 104
12345 = mantissa, 10 = base, -4 = exponent; all integers

Computers store numbers with a FINITE number of digits

There are two basics data types:
- Integer: exact representation (within the allowed range, i.e., no approximation) and

exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x BT-E | with s “sign”, M “mantissa” (aka,
significand or coefficient), B “base”, T “exponent”, and E “byes”.
Ex: 1.2345 = 12345 x 104
12345 = mantissa, 10 = base, -4 = exponent; all integers

Definitions:

1) Em: machine accuracy (the smallest floating point number that can be added to 1.0 and
produces something different from 1.0.

Computers store numbers with a FINITE number of digits

There are two basics data types:
- Integer: exact representation (within the allowed range, i.e., no approximation) and

exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x BT-E | with s “sign”, M “mantissa” (aka,
significand or coefficient), B “base”, T “exponent”, and E “byes”.
Ex: 1.2345 = 12345 x 104
12345 = mantissa, 10 = base, -4 = exponent; all integers

Definitions:

1) Em: machine accuracy (the smallest floating point number that can be added to 1.0 and

produces something different from 1.0.
2) Er: round-off error (error made in the operations between two FP#s). | always have an error
related to the last significant digit in the mantissa.
Ex: 1.23 x 1.27 = 1.578, but the machine gives me 1.58

Computers store numbers with a FINITE number of digits

There are two basics data types:
- Integer: exact representation (within the allowed range, i.e., no approximation) and

exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x BT-E | with s “sign”, M “mantissa” (aka,
significand or coefficient), B “base”, T “exponent”, and E “byes”.
Ex: 1.2345 = 12345 x 104
12345 = mantissa, 10 = base, -4 = exponent; all integers

Definitions:

1) Em: machine accuracy (the smallest floating point number that can be added to 1.0 and

produces something different from 1.0.
2) Er: round-off error (error made in the operations between two FP#s). | always have an error

related to the last significant digit in the mantissa.
Ex: 1.23 x 1.27 = 1.578, but the machine gives me 1.58

Take N operations, final error is: Eﬁnal ~ VN X ER

l.e., the more one plays with numbers, or the more
operations one does, the larger the error will be

Computers store numbers with a FINITE number of digits

There are two basics data types:
- Integer: exact representation (within the allowed range, i.e., no approximation) and

exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x BT-E | with s “sign”, M “mantissa” (aka,
significand or coefficient), B “base”, T “exponent”, and E “byes”.
Ex: 1.2345 = 12345 x 104
12345 = mantissa, 10 = base, -4 = exponent; all integers

Definitions:

1) Em: machine accuracy (the smallest floating point number that can be added to 1.0 and

produces something different from 1.0.
2) Er: round-off error (error made in the operations between two FP#s). | always have an error

related to the last significant digit in the mantissa.
Ex: 1.23 x 1.27 = 1.578, but the machine gives me 1.58

Take N operations, final error is: Eﬁnal ~ VN X ER

l.e., the more one plays with numbers, or the more
operations one does, the larger the error will be

3) Er: truncation error (completely dependent on the programmer)
Et = (numeric solution of a problem) — (exact solution of the problem)

Computers store numbers with a FINITE number of digits

There are two basics data types:
- Integer: exact representation (within the allowed range, i.e., no approximation) and

exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x BT-E | with s “sign”, M “mantissa” (aka,
significand or coefficient), B “base”, T “exponent”, and E “byes”.
Ex: 1.2345 = 12345 x 104
12345 = mantissa, 10 = base, -4 = exponent; all integers

Definitions:

1) Em: machine accuracy (the smallest floating point number that can be added to 1.0 and

produces something different from 1.0.
2) Er: round-off error (error made in the operations between two FP#s). | always have an error

related to the last significant digit in the mantissa.
Ex: 1.23 x 1.27 = 1.578, but the machine gives me 1.58

Take N operations, final error is: Eﬁnal ~ VN X ER

l.e., the more one plays with numbers, or the more
operations one does, the larger the error will be

3) Er: truncation error (completely dependent on the programmer)
Et = (numeric solution of a problem) — (exact solution of the problem)

Ex.: f(x)=1f(xq)+ {'(x0)Ax + f"(XO)ATX+0(AX3)

Computers store numbers with a FINITE number of digits

There are two basics data types:
- Integer: exact representation (within the allowed range, i.e., no approximation) and

exact arithmetics (i.e., no division)
- Floating points numbers (FP#): s x M x BT-E | with s “sign”, M “mantissa” (aka,
significand or coefficient), B “base”, T “exponent”, and E “byes”.
Ex: 1.2345 = 12345 x 104
12345 = mantissa, 10 = base, -4 = exponent; all integers

Definitions:

1) Em: machine accuracy (the smallest floating point number that can be added to 1.0 and

produces something different from 1.0.
2) Er: round-off error (error made in the operations between two FP#s). | always have an error

related to the last significant digit in the mantissa.
Ex: 1.23 x 1.27 = 1.578, but the machine gives me 1.58

Take N operations, final error is: Eﬁnal ~ VN X ER

l.e., the more one plays with numbers, or the more
operations one does, the larger the error will be

3) Er: truncation error (completely dependent on the programmer)
Et = (numeric solution of a problem) — (exact solution of the problem)

Ex.: f(x)=1f(xq)+ {'(x0)Ax + f"(Xo)ATX—I—O(AXS)

Er

ROOT FINDING: X so that f(;‘g) — 0

\

m-functions n-independent
variables

ROOT FINDING: X so that f(;‘g) — 0

\

m-functions n-independent
variables

There are no good general methods for solving systems of more than one non-linear equation.
Things are much simpler if m=n=1.

Except for linear problems, root finding proceeds by iteration, i.e., we start with a suitable trial
value and use an algorithm that will improve it until satisfaction.

ROOT FINDING: X so that f(;‘g) — 0

\

m-functions n-independent
variables

There are no good general methods for solving systems of more than one non-linear equation.
Things are much simpler if m=n=1.

Except for linear problems, root finding proceeds by iteration, i.e., we start with a suitable trial
value and use an algorithm that will improve it until satisfaction.

f(x) 4

Roots

> X

ROOT FINDING: X so that f(;‘g) — 0

\

m-functions n-independent
variables

There are no good general methods for solving systems of more than one non-linear equation.
Things are much simpler if m=n=1.

Except for linear problems, root finding proceeds by iteration, i.e., we start with a suitable trial
value and use an algorithm that will improve it until satisfaction.

f(x) 4

Roots

> X

Rule of thumb: first of all, make sure there is a root (plot the function!)

Bracketing:

Letbe f=f(x), xR

then xo is bracketed in [x1,x2] if f(x1)f(x2)<0

Bracketing:

Letbe f=f(x), xR

then xo is bracketed in [x1,x2] if f(x1)f(x2)<0

Note: f(x1)f(x2)<0 is not a sufficient nor a necessary condition of the existence of the root.

Bracketing:

Letbe f=f(x), xR

then xo is bracketed in [x1,x2] if f(x1)f(x2)<0

Bracketing:

Letbe f=f(x), xR

then xo is bracketed in [x1,x2] if f(x1)f(x2)<0

f(x1)f(x2)>0 even though | have two roots
=> not a sufficient condition

Bracketing:

Letbe f=f(x), xR

then xo is bracketed in [x1,x2] if f(x1)f(x2)<0

f(x1)f(x2)>0 even though | have two roots
=> not a sufficient condition

f(x1)f(x2)<0 even though there is no root
=> not a necessary condition

Algorithm for bracketing:

T = La,b] | which | want to divide in N smallest intervals

Ax = b-a
N
a :Léx } -
X Xy . b
X,‘ ot & ,,\-er
. Ceun
(‘?i :-ﬁ(&)]
‘ﬁ:(ﬂ‘fﬁ
—— . .
%‘ PE-S Xam=% | i lfoundaroot
Xp = Xyt A X | . M’ - and | store it
- 0, N~ N
f2 = &) - %'?2(0] =1
. | [' NG
)(' e)(1
| £o= 42

Bisection:

Given an interval [x1,x2] bracketing xo, we evaluate the function of the mid-point and we use it
to replace one of the previous limits (in particular the one which still satisfies f1f(xn)<O.

Bisection:

Given an interval [x1,x2] bracketing xo, we evaluate the function of the mid-point and we use it
to replace one of the previous limits (in particular the one which still satisfies f1f(xn)<O.

£(X) &

> X

Bisection:

Given an interval [x1,x2] bracketing xo, we evaluate the function of the mid-point and we use it
to replace one of the previous limits (in particular the one which still satisfies f1f(xn)<O.

£(X) &

} - > X
X3 X2

IF f1f(x3)<0 then | can throw away x2 because X3z is closer to Xo.

Bisection:

Given an interval [x1,x2] bracketing xo, we evaluate the function of the mid-point and we use it
to replace one of the previous limits (in particular the one which still satisfies f1f(xn)<O.

£(X) &

} - > X
X3 X2

IF f1f(x3)<0 then | can throw away x2 because X3z is closer to Xo.

Pros: it cannot falil
Cons: not efficient (i.e., not quick)

Bisection:

Given an interval [x1,x2] bracketing xo, we evaluate the function of the mid-point and we use it
to replace one of the previous limits (in particular the one which still satisfies f1f(xn)<O.

£(X) &

} - > X
X3 X2

IF f1f(x3)<0 then | can throw away x2 because X3z is closer to Xo.

Pros: it cannot falil
Cons: not efficient (i.e., not quick)

1

Set En the deviation from xo at each iteration: k., — —F 1 = 27 "E,

Bisection:

Given an interval [x1,x2] bracketing xo, we evaluate the function of the mid-point and we use it
to replace one of the previous limits (in particular the one which still satisfies f1f(xn)<O.

£(X) &

> X

X3 X2

IF f1f(x3)<0 then | can throw away x2 because X3z is closer to Xo.

Pros: it cannot falil
Cons: not efficient (i.e., not quick)

1

Set En the deviation from xo at each iteration: k., — —F 1 = 27 "E,

If you fix Eo (initial error) and Er is the final error, EF
the number of steps N necessary to achieve ErF => N — 10g2 E_
0

Bisection:

Given an interval [x1,x2] bracketing xo, we evaluate the function of the mid-point and we use it
to replace one of the previous limits (in particular the one which still satisfies f1f(xn)<O.

£(X) &

> X

X3 X2

IF f1f(x3)<0 then | can throw away x2 because X3z is closer to Xo.

Pros: it cannot falil
Cons: not efficient (i.e., not quick)

1

Set En the deviation from xo at each iteration: k., — —F 1 = 27 "E,

If you fix Eo (initial error) and Er is the final error, EF
the number of steps N necessary to achieve ErF => N — 10g2 E_
0

Note: EF=0 is not possible, since N would be infinity

Secant method:
Let xo be a root of f(x) and X in [a,b]

a) approximate the function as a line through f(x1) and f(x2): -

f(xo) —f(x1) f(x2) — f(x1)

X — X1 X9 — X1

b) f(f(o) ~ (0 then Xg = X1 + (Xg — Xl)

I f(x1) — f(x2)

new best guess \

correction

previous best guess

c) iterate by using X instead of x1 or x2

NOTE: this method is more efficient than bisection, i.e., after many iterations, you are getting
faster and faster to the solution with the secant method.

CAVEAT: the secant method does not bother checking whether the root is always bracketed,
l.e., it can fail

To avoid failure, one can use the false positive method.

False positive method:
basically, this is the secant method with a check on the cross product

a) Xo in [x1,x2], f(x1)<0 and f(x2)>0

f(x1)
f(x1) — f(x2)

c) check: if f(Xg)f(x2) < 0, the retain xz; if f(Xg)f(x2) > 0, then retain x;

b) evaluate }20 = X1 + (X2 — X1)

NOTE: the false positive method is a bit slower (because of the check), but more secure.

NOTE: the secant / false positive methods can falil
miserably; in this sample, they would be very slow.

Brent’s method: standard (fast and safe)

The super-linear (fast) convergence rate is achieved by using an inverse quadratic interpolation
among 3 points and estimating the root as the place where the interpolating function vanishes.

This method provides the certainty of the bisection method with the speed of the secant method.

a) (x1,f(x1)), (x2,{(x2)), (x3,(x3))

P
b) Xp = X9 + — with P=S[T(R-T)(x3-X1)-(1-R)(X2-X1)]
Q Q=(T-1)(R-1)
R

c) IF ‘f(f{o)| — EF < () then you are getting close to the tolerance (good enough, happy);
otherwise, iterate

Newton-Raphson method:
Let f be a function with known derivative |

_] / —
Consider the point X and calculate f(X)

/—/"" I

Taylor expand around X :

f(Xo) = f(x) — f/(?_()(—Xo) + o((Z — &p)?)
_ N (69

f(XQ) =0 - X0 —

IF |f(X0)| < Er then stop, otherwise
(%) set X = X and reiterate.

Newton-Raphson method: r ?\\

Let f be a function with known derivative

: : — ! (=
Consider the point X and calculate f(X)

amm—

Taylor expand around X :
f(X0) = f(%) — f'(X)(X — %o) + o((Z — T0)*)
f(}zg) = () =P xX)g=X—

IF |f(X0)] < Er then stop, otherwise
set X = X and reiterate.

S It fails miserably because the derivative is
Ve
parallel to x (no intersection with the x axis)

This method is
very efficient, but it | |
can fail miserably: fd e N e

l.e., loop or very slowly

Newton-Raphson method: FN

Let f be a function with known derivative

oo SISO

: : — ! (=
Consider the point X and calculate f(X)

Taylor expand around X :

amm—

f(%0) = f(x) — £'(%)(x — %o) + o((z — Z0)*)

- . o f(x
f(Xg) =0 = Xg =X — o _) IF |f(X0)] < Er then stop, otherwise
(X) set X = X and reiterate.

This method is
very efficient, but it

It fails miserably because the derivative is
can fail miserably:

parallel to x (no intersection with the x axis)

/N s, i.e., loop or very slowly

- This method should be used with care,
7 and only if you know well your function

SUMMARY:

Use Brent’s method as standard (fast and safe)
Use Newton-Raphson method only for certain functions (e.g., parabola)

ALWAYS CHECK THE CODE with a test function:
y=x2-X = X(x-1), with roots x0,1=0 and Xo 2=1

