
✐
✐

“nr3” — 2007/5/1 — 20:53 — page 110 — #132 ✐
✐

✐ ✐

Interpolation and
Extrapolation

CHAPTER 3

3.0 Introduction
We sometimes know the value of a function f .x/ at a set of points x0; x1; : : : ;

xN!1 (say, with x0 < : : : < xN!1), but we don’t have an analytic expression for
f .x/ that lets us calculate its value at an arbitrary point. For example, the f .xi /’s
might result from some physical measurement or from long numerical calculation
that cannot be cast into a simple functional form. Often the xi ’s are equally spaced,
but not necessarily.

The task now is to estimate f .x/ for arbitrary x by, in some sense, drawing a
smooth curve through (and perhaps beyond) the xi . If the desired x is in between the
largest and smallest of the xi ’s, the problem is called interpolation; if x is outside
that range, it is called extrapolation, which is considerably more hazardous (as many
former investment analysts can attest).

Interpolation and extrapolation schemes must model the function, between or
beyond the known points, by some plausible functional form. The form should be
sufficiently general so as to be able to approximate large classes of functions that
might arise in practice. By far most common among the functional forms used are
polynomials (!3.2). Rational functions (quotients of polynomials) also turn out to
be extremely useful (!3.4). Trigonometric functions, sines and cosines, give rise to
trigonometric interpolation and related Fourier methods, which we defer to Chapters
12 and 13.

There is an extensive mathematical literature devoted to theorems about what
sort of functions can be well approximated by which interpolating functions. These
theorems are, alas, almost completely useless in day-to-day work: If we know enough
about our function to apply a theorem of any power, we are usually not in the pitiful
state of having to interpolate on a table of its values!

Interpolation is related to, but distinct from, function approximation. That task
consists of finding an approximate (but easily computable) function to use in place of
a more complicated one. In the case of interpolation, you are given the function f at
points not of your own choosing. For the case of function approximation, you are al-
lowed to compute the function f at any desired points for the purpose of developing

110

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 111 — #133 ✐
✐

✐ ✐

3.0 Introduction 111

your approximation. We deal with function approximation in Chapter 5.
One can easily find pathological functions that make a mockery of any interpo-

lation scheme. Consider, for example, the function

f .x/ D 3x2 C 1

!4
ln
!
.! ! x/2

"
C 1 (3.0.1)

which is well-behaved everywhere except at x D ! , very mildly singular at x D ! ,
and otherwise takes on all positive and negative values. Any interpolation based on
the values x D 3:13; 3:14; 3:15; 3:16, will assuredly get a very wrong answer for the
value x D 3:1416, even though a graph plotting those five points looks really quite
smooth! (Try it.)

Because pathologies can lurk anywhere, it is highly desirable that an interpo-
lation and extrapolation routine should provide an estimate of its own error. Such
an error estimate can never be foolproof, of course. We could have a function that,
for reasons known only to its maker, takes off wildly and unexpectedly between two
tabulated points. Interpolation always presumes some degree of smoothness for the
function interpolated, but within this framework of presumption, deviations from
smoothness can be detected.

Conceptually, the interpolation process has two stages: (1) Fit (once) an inter-
polating function to the data points provided. (2) Evaluate (as many times as you
wish) that interpolating function at a target point x.

However, this two-stage method is usually not the best way to proceed in prac-
tice. Typically it is computationally less efficient, and more susceptible to roundoff
error, than methods that construct a functional estimate f .x/ directly from the N
tabulated values every time one is desired. Many practical schemes start at a nearby
point f .xi /, and then add a sequence of (hopefully) decreasing corrections, as in-
formation from other nearby f .xi /’s is incorporated. The procedure typically takes
O.M 2/ operations, whereM " N is the number of local points used. If everything
is well behaved, the last correction will be the smallest, and it can be used as an in-
formal (though not rigorous) bound on the error. In schemes like this, we might also
say that there are two stages, but now they are: (1) Find the right starting position in
the table (xi or i). (2) Perform the interpolation usingM nearby values (for example,
centered on xi).

In the case of polynomial interpolation, it sometimes does happen that the co-
efficients of the interpolating polynomial are of interest, even though their use in
evaluating the interpolating function should be frowned on. We deal with this possi-
bility in "3.5.

Local interpolation, using M nearest-neighbor points, gives interpolated values
f .x/ that do not, in general, have continuous first or higher derivatives. That hap-
pens because, as x crosses the tabulated values xi , the interpolation scheme switches
which tabulated points are the “local” ones. (If such a switch is allowed to occur
anywhere else, then there will be a discontinuity in the interpolated function itself at
that point. Bad idea!)

In situations where continuity of derivatives is a concern, one must use the
“stiffer” interpolation provided by a so-called spline function. A spline is a polyno-
mial between each pair of table points, but one whose coefficients are determined
“slightly” nonlocally. The nonlocality is designed to guarantee global smoothness in
the interpolated function up to some order of derivative. Cubic splines ("3.3) are the

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 112 — #134 ✐
✐

✐ ✐

112 Chapter 3. Interpolation and Extrapolation

(a)

(b)

Figure 3.0.1. (a) A smooth function (solid line) is more accurately interpolated by a high-order polyno-
mial (shown schematically as dotted line) than by a low-order polynomial (shown as a piecewise linear
dashed line). (b) A function with sharp corners or rapidly changing higher derivatives is less accurately
approximated by a high-order polynomial (dotted line), which is too “stiff,” than by a low-order polyno-
mial (dashed lines). Even some smooth functions, such as exponentials or rational functions, can be badly
approximated by high-order polynomials.

most popular. They produce an interpolated function that is continuous through the
second derivative. Splines tend to be stabler than polynomials, with less possibility
of wild oscillation between the tabulated points.

The number M of points used in an interpolation scheme, minus 1, is called
the order of the interpolation. Increasing the order does not necessarily increase
the accuracy, especially in polynomial interpolation. If the added points are distant
from the point of interest x, the resulting higher-order polynomial, with its additional
constrained points, tends to oscillate wildly between the tabulated values. This os-
cillation may have no relation at all to the behavior of the “true” function (see Figure
3.0.1). Of course, adding points close to the desired point usually does help, but a
finer mesh implies a larger table of values, which is not always available.

For polynomial interpolation, it turns out that the worst possible arrangement
of the xi ’s is for them to be equally spaced. Unfortunately, this is by far the most
common way that tabulated data are gathered or presented. High-order polynomial
interpolation on equally spaced data is ill-conditioned: small changes in the data can
give large differences in the oscillations between the points. The disease is particu-
larly bad if you are interpolating on values of an analytic function that has poles in

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 113 — #135 ✐
✐

✐ ✐

3.0 Introduction 113

the complex plane lying inside a certain oval region whose major axis is theM -point
interval. But even if you have a function with no nearby poles, roundoff error can, in
effect, create nearby poles and cause big interpolation errors. In !5.8 we will see that
these issues go away if you are allowed to choose an optimal set of xi ’s. But when
you are handed a table of function values, that option is not available.

As the order is increased, it is typical for interpolation error to decrease at first,
but only up to a certain point. Larger orders result in the error exploding.

For the reasons mentioned, it is a good idea to be cautious about high-order
interpolation. We can enthusiastically endorse polynomial interpolation with 3 or 4
points; we are perhaps tolerant of 5 or 6; but we rarely go higher than that unless there
is quite rigorous monitoring of estimated errors. Most of the interpolation methods
in this chapter are applied piecewise using only M points at a time, so that the order
is a fixed value M ! 1, no matter how large N is. As mentioned, splines (!3.3) are a
special case where the function and various derivatives are required to be continuous
from one interval to the next, but the order is nevertheless held fixed a a small value
(usually 3).

In !3.4 we discuss rational function interpolation. In many, but not all, cases,
rational function interpolation is more robust, allowing higher orders to give higher
accuracy. The standard algorithm, however, allows poles on the real axis or nearby in
the complex plane. (This is not necessarily bad: You may be trying to approximate
a function with such poles.) A newer method, barycentric rational interpolation
(!3.4.1) suppresses all nearby poles. This is the only method in this chapter for
which we might actually encourage experimentation with high order (say, > 6).
Barycentric rational interpolation competes very favorably with splines: its error is
often smaller, and the resulting approximation is infinitely smooth (unlike splines).

The interpolation methods below are also methods for extrapolation. An impor-
tant application, in Chapter 17, is their use in the integration of ordinary differential
equations. There, considerable care is taken with the monitoring of errors. Other-
wise, the dangers of extrapolation cannot be overemphasized: An interpolating func-
tion, which is perforce an extrapolating function, will typically go berserk when the
argument x is outside the range of tabulated values by more (and often significantly
less) than the typical spacing of tabulated points.

Interpolation can be done in more than one dimension, e.g., for a function
f .x; y; z/. Multidimensional interpolation is often accomplished by a sequence of
one-dimensional interpolations, but there are also other techniques applicable to scat-
tered data. We discuss multidimensional methods in !3.6 – !3.8.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, !25.2.

Ueberhuber, C.W. 1997, Numerical Computation: Methods, Software, and Analysis, vol. 1 (Berlin:
Springer), Chapter 9.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
Chapter 2.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 3.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 5.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 114 — #136 ✐
✐

✐ ✐

114 Chapter 3. Interpolation and Extrapolation

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), Chapter 3.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods; reprinted 1994 (New York:
Dover), Chapter 6.

3.1 Preliminaries: Searching an Ordered Table
We want to define an interpolation object that knows everything about interpo-

lation except one thing — how to actually interpolate! Then we can plug mathemati-
cally different interpolation methods into the object to get different objects sharing a
common user interface. A key task common to all objects in this framework is find-
ing your place in the table of xi ’s, given some particular value x at which the function
evaluation is desired. It is worth some effort to do this efficiently; otherwise you can
easily spend more time searching the table than doing the actual interpolation.

Our highest-level object for one-dimensional interpolation is an abstract base
class containing just one function intended to be called by the user: interp(x)
returns the interpolated function value at x. The base class “promises,” by declaring
a virtual function rawinterp(jlo,x), that every derived interpolation class will
provide a method for local interpolation when given an appropriate local starting
point in the table, an offset jlo. Interfacing between interp and rawinterp must
thus be a method for calculating jlo from x, that is, for searching the table. In fact,
we will use two such methods.

struct Base_interpinterp 1d.h
Abstract base class used by all interpolation routines in this chapter. Only the routine interp
is called directly by the user.
{

Int n, mm, jsav, cor, dj;
const Doub *xx, *yy;
Base_interp(VecDoub_I &x, const Doub *y, Int m)
Constructor: Set up for interpolating on a table of x’s and y’s of length m. Normally called
by a derived class, not by the user.

: n(x.size()), mm(m), jsav(0), cor(0), xx(&x[0]), yy(y) {
dj = MIN(1,(int)pow((Doub)n,0.25));

}

Doub interp(Doub x) {
Given a value x, return an interpolated value, using data pointed to by xx and yy.

Int jlo = cor ? hunt(x) : locate(x);
return rawinterp(jlo,x);

}

Int locate(const Doub x); See definitions below.
Int hunt(const Doub x);

Doub virtual rawinterp(Int jlo, Doub x) = 0;
Derived classes provide this as the actual interpolation method.

};

Formally, the problem is this: Given an array of abscissas xj , j D 0; : : : ; N !1,
with the abscissas either monotonically increasing or monotonically decreasing, and
given an integer M " N , and a number x, find an integer jlo such that x is centered

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 115 — #137 ✐
✐

✐ ✐

3.1 Preliminaries: Searching an Ordered Table 115

among theM abscissas xjlo ; : : : ; xjloCM!1. By centered we mean that x lies between
xm and xmC1 insofar as possible, where

m D jlo C
!
M ! 2
2

"
(3.1.1)

By “insofar as possible” we mean that jlo should never be less than zero, nor should
jlo CM ! 1 be greater than N ! 1.

In most cases, when all is said and done, it is hard to do better than bisection,
which will find the right place in the table in about log2N tries.

Int Base_interp::locate(const Doub x) interp 1d.h
Given a value x, return a value j such that x is (insofar as possible) centered in the subrange
xx[j..j+mm-1], where xx is the stored pointer. The values in xx must be monotonic, either
increasing or decreasing. The returned value is not less than 0, nor greater than n-1.
{

Int ju,jm,jl;
if (n < 2 || mm < 2 || mm > n) throw("locate size error");
Bool ascnd=(xx[n-1] >= xx[0]); True if ascending order of table, false otherwise.
jl=0; Initialize lower
ju=n-1; and upper limits.
while (ju-jl > 1) { If we are not yet done,

jm = (ju+jl) >> 1; compute a midpoint,
if (x >= xx[jm] == ascnd)

jl=jm; and replace either the lower limit
else

ju=jm; or the upper limit, as appropriate.
} Repeat until the test condition is satisfied.
cor = abs(jl-jsav) > dj ? 0 : 1; Decide whether to use hunt or locate next time.
jsav = jl;
return MAX(0,MIN(n-mm,jl-((mm-2)>>1)));

}

The above locate routine accesses the array of values xx[] via a pointer stored by the
base class. This rather primitive method of access, avoiding the use of a higher-level vector
class like VecDoub, is here preferable for two reasons: (1) It’s usually faster; and (2) for two-
dimensional interpolation, we will later need to point directly into a row of a matrix. The
peril of this design choice is that it assumes that consecutive values of a vector are stored
consecutively, and similarly for consecutive values of a single row of a matrix. See discussion
in !1.4.2.

3.1.1 Search with Correlated Values
Experience shows that in many, perhaps even most, applications, interpolation

routines are called with nearly identical abscissas on consecutive searches. For ex-
ample, you may be generating a function that is used on the right-hand side of a
differential equation: Most differential equation integrators, as we shall see in Chap-
ter 17, call for right-hand side evaluations at points that hop back and forth a bit, but
whose trend moves slowly in the direction of the integration.

In such cases it is wasteful to do a full bisection, ab initio, on each call. Much
more desirable is to give our base class a tiny bit of intelligence: If it sees two calls
that are “close,” it anticipates that the next call will also be. Of course, there must
not be too big a penalty if it anticipates wrongly.

The hunt method starts with a guessed position in the table. It first “hunts,”
either up or down, in increments of 1, then 2, then 4, etc., until the desired value is
bracketed. It then bisects in the bracketed interval. At worst, this routine is about a

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 116 — #138 ✐
✐

✐ ✐

116 Chapter 3. Interpolation and Extrapolation

hunt phase

bisection phase

0 6 9

7

13 21

31

37

310
(a)

(b)

50

63

Figure 3.1.1. Finding a table entry by bisection. Shown here is the sequence of steps that converge to
element 50 in a table of length 64. (b) The routine hunt searches from a previous known position in
the table by increasing steps and then converges by bisection. Shown here is a particularly unfavorable
example, converging to element 31 from element 6. A favorable example would be convergence to an
element near 6, such as 8, which would require just three “hops.”

factor of 2 slower than locate above (if the hunt phase expands to include the whole
table). At best, it can be a factor of log2n faster than locate, if the desired point is
usually quite close to the input guess. Figure 3.1.1 compares the two routines.

Int Base_interp::hunt(const Doub x)interp 1d.h
Given a value x, return a value j such that x is (insofar as possible) centered in the subrange
xx[j..j+mm-1], where xx is the stored pointer. The values in xx must be monotonic, either
increasing or decreasing. The returned value is not less than 0, nor greater than n-1.
{

Int jl=jsav, jm, ju, inc=1;
if (n < 2 || mm < 2 || mm > n) throw("hunt size error");
Bool ascnd=(xx[n-1] >= xx[0]); True if ascending order of table, false otherwise.
if (jl < 0 || jl > n-1) { Input guess not useful. Go immediately to bisec-

tion.jl=0;
ju=n-1;

} else {
if (x >= xx[jl] == ascnd) { Hunt up:

for (;;) {
ju = jl + inc;
if (ju >= n-1) { ju = n-1; break;} Off end of table.
else if (x < xx[ju] == ascnd) break; Found bracket.
else { Not done, so double the increment and try again.

jl = ju;
inc += inc;

}
}

} else { Hunt down:
ju = jl;
for (;;) {

jl = jl - inc;
if (jl <= 0) { jl = 0; break;} Off end of table.
else if (x >= xx[jl] == ascnd) break; Found bracket.
else { Not done, so double the increment and try again.

ju = jl;
inc += inc;

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 117 — #139 ✐
✐

✐ ✐

3.1 Preliminaries: Searching an Ordered Table 117

}
}

}
}
while (ju-jl > 1) { Hunt is done, so begin the final bisection phase:

jm = (ju+jl) >> 1;
if (x >= xx[jm] == ascnd)

jl=jm;
else

ju=jm;
}
cor = abs(jl-jsav) > dj ? 0 : 1; Decide whether to use hunt or locate next

time.jsav = jl;
return MAX(0,MIN(n-mm,jl-((mm-2)>>1)));

}

The methods locate and hunt each update the boolean variable cor in the
base class, indicating whether consecutive calls seem correlated. That variable is
then used by interp to decide whether to use locate or hunt on the next call. This
is all invisible to the user, of course.

3.1.2 Example: Linear Interpolation
You may think that, at this point, we have wandered far from the subject of

interpolation methods. To show that we are actually on track, here is a class that
efficiently implements piecewise linear interpolation.

struct Linear_interp : Base_interp interp linear.h
Piecewise linear interpolation object. Construct with x and y vectors, then call interp for
interpolated values.
{

Linear_interp(VecDoub_I &xv, VecDoub_I &yv)
: Base_interp(xv,&yv[0],2) {}

Doub rawinterp(Int j, Doub x) {
if (xx[j]==xx[j+1]) return yy[j]; Table is defective, but we can recover.
else return yy[j] + ((x-xx[j])/(xx[j+1]-xx[j]))*(yy[j+1]-yy[j]);

}
};

You construct a linear interpolation object by declaring an instance with your
filled vectors of abscissas xi and function values yi D f .xi /,

Int n=...;
VecDoub xx(n), yy(n);
...
Linear_interp myfunc(xx,yy);

Behind the scenes, the base class constructor is called with M D 2 because linear
interpolation uses just the two points bracketing a value. Also, pointers to the data
are saved. (You must ensure that the vectors xx and yy don’t go out of scope while
myfunc is in use.)

When you want an interpolated value, it’s as simple as

Doub x,y;
...
y = myfunc.interp(x);

If you have several functions that you want to interpolate, you declare a separate
instance of Linear_interp for each one.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 118 — #140 ✐
✐

✐ ✐

118 Chapter 3. Interpolation and Extrapolation

We will now use the same interface for more advanced interpolation methods.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1997, Sorting and Searching, 3rd ed., vol. 3 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), !6.2.1.

3.2 Polynomial Interpolation and Extrapolation
Through any two points there is a unique line. Through any three points there is

a unique quadratic. Et cetera. The interpolating polynomial of degreeM !1 through
the M points y0 D f .x0/; y1 D f .x1/; : : : ; yM!1 D f .xM!1/ is given explicitly
by Lagrange’s classical formula,

P.x/ D .x ! x1/.x ! x2/:::.x ! xM!1/
.x0 ! x1/.x0 ! x2/:::.x0 ! xM!1/

y0

C .x ! x0/.x ! x2/:::.x ! xM!1/
.x1 ! x0/.x1 ! x2/:::.x1 ! xM!1/

y1 C " " "

C .x ! x0/.x ! x1/:::.x ! xM!2/
.xM!1 ! x0/.xM!1 ! x1/:::.xM!1 ! xM!2/

yM!1

(3.2.1)

There are M terms, each a polynomial of degree M ! 1 and each constructed to be
zero at all of the xi ’s except one, at which it is constructed to be yi .

It is not terribly wrong to implement the Lagrange formula straightforwardly,
but it is not terribly right either. The resulting algorithm gives no error estimate, and
it is also somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomial) is Neville’s algorithm, closely related to
and sometimes confused with Aitken’s algorithm, the latter now considered obsolete.

Let P0 be the value at x of the unique polynomial of degree zero (i.e., a con-
stant) passing through the point .x0; y0/; so P0 D y0. Likewise define P1; P2; : : : ;
PM!1. Now let P01 be the value at x of the unique polynomial of degree one passing
through both .x0; y0/ and .x1; y1/. LikewiseP12; P23; : : : ; P.M!2/.M!1/. Similarly,
for higher-order polynomials, up to P012:::.M!1/, which is the value of the unique in-
terpolating polynomial through all M points, i.e., the desired answer. The various
P ’s form a “tableau” with “ancestors” on the left leading to a single “descendant” at
the extreme right. For example, with M D 4,

x0 W y0 D P0
P01

x1 W y1 D P1 P012
P12 P0123

x2 W y2 D P2 P123
P23

x3 W y3 D P3

(3.2.2)

Neville’s algorithm is a recursive way of filling in the numbers in the tableau
a column at a time, from left to right. It is based on the relationship between a

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 119 — #141 ✐
✐

✐ ✐

3.2 Polynomial Interpolation and Extrapolation 119

“daughter” P and its two “parents,”

Pi.iC1/:::.iCm/ D
.x ! xiCm/Pi.iC1/:::.iCm!1/ C .xi ! x/P.iC1/.iC2/:::.iCm/

xi ! xiCm
(3.2.3)

This recurrence works because the two parents already agree at points xiC1 : : :
xiCm!1.

An improvement on the recurrence (3.2.3) is to keep track of the small differ-
ences between parents and daughters, namely to define (for m D 1; 2; : : : ;M ! 1),

Cm;i " Pi:::.iCm/ ! Pi:::.iCm!1/
Dm;i " Pi:::.iCm/ ! P.iC1/:::.iCm/:

(3.2.4)

Then one can easily derive from (3.2.3) the relations

DmC1;i D
.xiCmC1 ! x/.Cm;iC1 !Dm;i /

xi ! xiCmC1
CmC1;i D

.xi ! x/.Cm;iC1 !Dm;i /
xi ! xiCmC1

(3.2.5)

At each level m, the C ’s and D’s are the corrections that make the interpolation one
order higher. The final answer P0:::.M!1/ is equal to the sum of any yi plus a set of
C ’s and/or D’s that form a path through the family tree to the rightmost daughter.

Here is the class implementing polynomial interpolation or extrapolation. All
of its “support infrastructure” is in the base class Base_interp. It needs only to
provide a rawinterp method that contains Neville’s algorithm.

struct Poly_interp : Base_interp interp 1d.h
Polynomial interpolation object. Construct with x and y vectors, and the number M of points
to be used locally (polynomial order plus one), then call interp for interpolated values.
{

Doub dy;
Poly_interp(VecDoub_I &xv, VecDoub_I &yv, Int m)

: Base_interp(xv,&yv[0],m), dy(0.) {}
Doub rawinterp(Int jl, Doub x);

};

Doub Poly_interp::rawinterp(Int jl, Doub x)
Given a value x, and using pointers to data xx and yy, this routine returns an interpolated
value y, and stores an error estimate dy. The returned value is obtained by mm-point polynomial
interpolation on the subrange xx[jl..jl+mm-1].
{

Int i,m,ns=0;
Doub y,den,dif,dift,ho,hp,w;
const Doub *xa = &xx[jl], *ya = &yy[jl];
VecDoub c(mm),d(mm);
dif=abs(x-xa[0]);
for (i=0;i<mm;i++) { Here we find the index ns of the closest table entry,

if ((dift=abs(x-xa[i])) < dif) {
ns=i;
dif=dift;

}
c[i]=ya[i]; and initialize the tableau of c’s and d’s.
d[i]=ya[i];

}
y=ya[ns--]; This is the initial approximation to y.
for (m=1;m<mm;m++) { For each column of the tableau,

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 120 — #142 ✐
✐

✐ ✐

120 Chapter 3. Interpolation and Extrapolation

for (i=0;i<mm-m;i++) { we loop over the current c’s and d’s and update
them.ho=xa[i]-x;

hp=xa[i+m]-x;
w=c[i+1]-d[i];
if ((den=ho-hp) == 0.0) throw("Poly_interp error");
This error can occur only if two input xa’s are (to within roundoff) identical.
den=w/den;
d[i]=hp*den; Here the c’s and d’s are updated.
c[i]=ho*den;

}
y += (dy=(2*(ns+1) < (mm-m) ? c[ns+1] : d[ns--]));
After each column in the tableau is completed, we decide which correction, c or d, we
want to add to our accumulating value of y, i.e., which path to take through the tableau
— forking up or down. We do this in such a way as to take the most “straight line”
route through the tableau to its apex, updating ns accordingly to keep track of where
we are. This route keeps the partial approximations centered (insofar as possible) on
the target x. The last dy added is thus the error indication.

}
return y;

}

The user interface to Poly_interp is virtually the same as for Linear_interp
(end of !3.1), except that an additional argument in the constructor setsM , the num-
ber of points used (the order plus one). A cubic interpolator looks like this:

Int n=...;
VecDoub xx(n), yy(n);
...
Poly_interp myfunc(xx,yy,4);

Poly_interp stores an error estimate dy for the most recent call to its interp
function:

Doub x,y,err;
...
y = myfunc.interp(x);
err = myfunc.dy;

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, !25.2.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
!2.1.

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), !6.1.

3.3 Cubic Spline Interpolation

Given a tabulated function yi D y.xi /; i D 0:::N ! 1, focus attention on one
particular interval, between xj and xjC1. Linear interpolation in that interval gives
the interpolation formula

y D Ayj C ByjC1 (3.3.1)

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 121 — #143 ✐
✐

✐ ✐

3.3 Cubic Spline Interpolation 121

where
A ! xjC1 " x

xjC1 " xj
B ! 1 " A D x " xj

xjC1 " xj
(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation
formula (3.2.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in the
interior of each interval and an undefined, or infinite, second derivative at the abscis-
sas xj . The goal of cubic spline interpolation is to get an interpolation formula that
is smooth in the first derivative and continuous in the second derivative, both within
an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of yi , we
also have tabulated values for the function’s second derivatives, y00, that is, a set
of numbers y00i . Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
value y00j on the left to a value y00jC1 on the right. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomial to have
zero values at xj and xjC1, then adding it in will not spoil the agreement with the
tabulated functional values yj and yjC1 at the endpoints xj and xjC1.

A little side calculation shows that there is only one way to arrange this con-
struction, namely replacing (3.3.1) by

y D Ayj C ByjC1 C Cy00j CDy00jC1 (3.3.3)

where A and B are defined in (3.3.2) and

C ! 1
6 .A

3 " A/.xjC1 " xj /2 D ! 1
6 .B

3 " B/.xjC1 " xj /2 (3.3.4)

Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear x-dependence of A and B , and (through A and
B) the cubic x-dependence of C and D.

We can readily check that y00 is in fact the second derivative of the new inter-
polating polynomial. We take derivatives of equation (3.3.3) with respect to x, using
the definitions of A;B;C; andD to compute dA=dx; dB=dx; dC=dx, and dD=dx.
The result is

dy

dx
D yjC1 " yj
xjC1 " xj

" 3A
2 " 1
6

.xjC1 " xj /y00j C
3B2 " 1

6
.xjC1 " xj /y00jC1 (3.3.5)

for the first derivative, and

d2y

dx2
D Ay00j C By00jC1 (3.3.6)

for the second derivative. Since A D 1 at xj , A D 0 at xjC1, while B is just the
other way around, (3.3.6) shows that y00 is just the tabulated second derivative, and
also that the second derivative will be continuous across, e.g., the boundary between
the two intervals .xj!1; xj / and .xj ; xjC1/.

The only problem now is that we supposed the y00i ’s to be known, when, actually,
they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 122 — #144 ✐
✐

✐ ✐

122 Chapter 3. Interpolation and Extrapolation

key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y00i .

The required equations are obtained by setting equation (3.3.5) evaluated for
x D xj in the interval .xj!1; xj / equal to the same equation evaluated for x D xj
but in the interval .xj ; xjC1/. With some rearrangement, this gives (for j D 1; : : : ;
N ! 2)

xj ! xj!1
6

y00j!1 C
xjC1 ! xj!1

3
y00j C

xjC1 ! xj
6

y00jC1 D
yjC1 ! yj
xjC1 ! xj

! yj ! yj!1
xj ! xj!1

(3.3.7)

These areN!2 linear equations in theN unknowns y00i ; i D 0; : : : ; N!1. Therefore
there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken
as boundary conditions at x0 and xN!1. The most common ways of doing this are
either

" set one or both of y000 and y00N!1 equal to zero, giving the so-called natural cubic
spline, which has zero second derivative on one or both of its boundaries, or
" set either of y000 and y00N!1 to values calculated from equation (3.3.5) so as to

make the first derivative of the interpolating function have a specified value on
either or both boundaries.

Although the boundary condition for natural splines is commonly used, another
possibility is to estimate the first derivatives at the endpoints from the first and last
few tabulated points. For details of how to do this, see the end of !3.7. Best, of
course, is if you can compute the endpoint first derivatives analytically.

One reason that cubic splines are especially practical is that the set of equations
(3.3.7), along with the two additional boundary conditions, are not only linear, but
also tridiagonal. Each y00j is coupled only to its nearest neighbors at j ˙ 1. There-
fore, the equations can be solved in O.N/ operations by the tridiagonal algorithm
(!2.4). That algorithm is concise enough to build right into the function called by the
constructor.

The object for cubic spline interpolation looks like this:

struct Spline_interp : Base_interpinterp 1d.h
Cubic spline interpolation object. Construct with x and y vectors, and (optionally) values of
the first derivative at the endpoints, then call interp for interpolated values.
{

VecDoub y2;

Spline_interp(VecDoub_I &xv, VecDoub_I &yv, Doub yp1=1.e99, Doub ypn=1.e99)
: Base_interp(xv,&yv[0],2), y2(xv.size())
{sety2(&xv[0],&yv[0],yp1,ypn);}

Spline_interp(VecDoub_I &xv, const Doub *yv, Doub yp1=1.e99, Doub ypn=1.e99)
: Base_interp(xv,yv,2), y2(xv.size())
{sety2(&xv[0],yv,yp1,ypn);}

void sety2(const Doub *xv, const Doub *yv, Doub yp1, Doub ypn);
Doub rawinterp(Int jl, Doub xv);

};

For now, you can ignore the second constructor; it will be used later for two-dimen-
sional spline interpolation.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 123 — #145 ✐
✐

✐ ✐

3.3 Cubic Spline Interpolation 123

The user interface differs from previous ones only in the addition of two con-
structor arguments, used to set the values of the first derivatives at the endpoints, y00
and y0N!1. These are coded with default values that signal that you want a natural
spline, so they can be omitted in most situations. Both constructors invoke sety2 to
do the actual work of computing, and storing, the second derivatives.

void Spline_interp::sety2(const Doub *xv, const Doub *yv, Doub yp1, Doub ypn) interp 1d.h
This routine stores an array y2[0..n-1] with second derivatives of the interpolating function
at the tabulated points pointed to by xv, using function values pointed to by yv. If yp1 and/or
ypn are equal to 1 " 1099 or larger, the routine is signaled to set the corresponding boundary
condition for a natural spline, with zero second derivative on that boundary; otherwise, they are
the values of the first derivatives at the endpoints.
{

Int i,k;
Doub p,qn,sig,un;
Int n=y2.size();
VecDoub u(n-1);
if (yp1 > 0.99e99) The lower boundary condition is set either to be “nat-

ural”y2[0]=u[0]=0.0;
else { or else to have a specified first derivative.

y2[0] = -0.5;
u[0]=(3.0/(xv[1]-xv[0]))*((yv[1]-yv[0])/(xv[1]-xv[0])-yp1);

}
for (i=1;i<n-1;i++) { This is the decomposition loop of the tridiagonal al-

gorithm. y2 and u are used for tem-
porary storage of the decomposed
factors.

sig=(xv[i]-xv[i-1])/(xv[i+1]-xv[i-1]);
p=sig*y2[i-1]+2.0;
y2[i]=(sig-1.0)/p;
u[i]=(yv[i+1]-yv[i])/(xv[i+1]-xv[i]) - (yv[i]-yv[i-1])/(xv[i]-xv[i-1]);
u[i]=(6.0*u[i]/(xv[i+1]-xv[i-1])-sig*u[i-1])/p;

}
if (ypn > 0.99e99) The upper boundary condition is set either to be

“natural”qn=un=0.0;
else { or else to have a specified first derivative.

qn=0.5;
un=(3.0/(xv[n-1]-xv[n-2]))*(ypn-(yv[n-1]-yv[n-2])/(xv[n-1]-xv[n-2]));

}
y2[n-1]=(un-qn*u[n-2])/(qn*y2[n-2]+1.0);
for (k=n-2;k>=0;k--) This is the backsubstitution loop of the tridiagonal

algorithm.y2[k]=y2[k]*y2[k+1]+u[k];
}

Note that, unlike the previous object Poly_interp, Spline_interp stores
data that depend on the contents of your array of yi ’s at its time of creation — a
whole vector y2. Although we didn’t point it out, the previous interpolation object
actually allowed the misuse of altering the contents of their x and y arrays on the fly
(as long as the lengths didn’t change). If you do that with Spline_interp, you’ll
get definitely wrong answers!

The required rawinterp method, never called directly by the users, uses the
stored y2 and implements equation (3.3.3):

Doub Spline_interp::rawinterp(Int jl, Doub x) interp 1d.h
Given a value x, and using pointers to data xx and yy, and the stored vector of second derivatives
y2, this routine returns the cubic spline interpolated value y.
{

Int klo=jl,khi=jl+1;
Doub y,h,b,a;
h=xx[khi]-xx[klo];
if (h == 0.0) throw("Bad input to routine splint"); The xa’s must be dis-

tinct.a=(xx[khi]-x)/h;

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 124 — #146 ✐
✐

✐ ✐

124 Chapter 3. Interpolation and Extrapolation

b=(x-xx[klo])/h; Cubic spline polynomial is now evaluated.
y=a*yy[klo]+b*yy[khi]+((a*a*a-a)*y2[klo]

+(b*b*b-b)*y2[khi])*(h*h)/6.0;
return y;

}

Typical use looks like this:

Int n=...;
VecDoub xx(n), yy(n);
...
Spline_interp myfunc(xx,yy);

and then, as often as you like,

Doub x,y;
...
y = myfunc.interp(x);

Note that no error estimate is available.

CITED REFERENCES AND FURTHER READING:

De Boor, C. 1978, A Practical Guide to Splines (New York: Springer).

Ueberhuber, C.W. 1997, Numerical Computation: Methods, Software, and Analysis, vol. 1 (Berlin:
Springer), Chapter 9.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), !4.4 – !4.5.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
!2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), !3.8.

3.4 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials but are well ap-
proximated by rational functions, that is quotients of polynomials. We denote by
Ri.iC1/:::.iCm/ a rational function passing through the m C 1 points .xi ; yi /; : : : ;
.xiCm; yiCm/. More explicitly, suppose

Ri.iC1/:::.iCm/ D
P!.x/

Q".x/
D p0 C p1x C ! ! !C p!x!

q0 C q1x C ! ! !C q"x"
(3.4.1)

Since there are "C # C 1 unknown p’s and q’s (q0 being arbitrary), we must have

mC 1 D "C # C 1 (3.4.2)

In specifying a rational function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability to model functions with poles, that is, zeros of the denomina-
tor of equation (3.4.1). These poles might occur for real values of x, if the function

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 125 — #147 ✐
✐

✐ ✐

3.4 Rational Function Interpolation and Extrapolation 125

to be interpolated itself has poles. More often, the function f .x/ is finite for all finite
real x but has an analytic continuation with poles in the complex x-plane. Such poles
can themselves ruin a polynomial approximation, even one restricted to real values
of x, just as they can ruin the convergence of an infinite power series in x. If you
draw a circle in the complex plane around your m tabulated points, then you should
not expect polynomial interpolation to be good unless the nearest pole is rather far
outside the circle. A rational function approximation, by contrast, will stay “good”
as long as it has enough powers of x in its denominator to account for (cancel) any
nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should also men-
tion in passing that rational function approximations can be used in analytic work.
One sometimes constructs a rational function approximation by the criterion that the
rational function of equation (3.4.1) itself have a power series expansion that agrees
with the firstmC1 terms of the power series expansion of the desired function f .x/.
This is called Padé approximation and is discussed in !5.12.

Bulirsch and Stoer found an algorithm of the Neville type that performs ratio-
nal function extrapolation on tabulated data. A tableau like that of equation (3.2.2)
is constructed column by column, leading to a result and an error estimate. The
Bulirsch-Stoer algorithm produces the so-called diagonal rational function, with the
degrees of the numerator and denominator equal (if m is even) or with the degree
of the denominator larger by one (if m is odd; cf. equation 3.4.2 above). For the
derivation of the algorithm, refer to [1]. The algorithm is summarized by a recur-
rence relation exactly analogous to equation (3.2.3) for polynomial approximation:

Ri.iC1/:::.iCm/ D R.iC1/:::.iCm/

C R.iC1/:::.iCm/ !Ri:::.iCm!1/!
x!xi

x!xiCm

" !
1 ! R.iC1/:::.iCm/!Ri:::.iCm!1/

R.iC1/:::.iCm/!R.iC1/:::.iCm!1/

"
! 1

(3.4.3)

This recurrence generates the rational functions through mC 1 points from the ones
throughm and (the termR.iC1/:::.iCm!1/ in equation 3.4.3)m!1 points. It is started
with

Ri D yi (3.4.4)

and with

R " ŒRi.iC1/:::.iCm/ with m D !1" D 0 (3.4.5)

Now, exactly as in equations (3.2.4) and (3.2.5) above, we can convert the re-
currence (3.4.3) to one involving only the small differences

Cm;i " Ri:::.iCm/ !Ri:::.iCm!1/
Dm;i " Ri:::.iCm/ !R.iC1/:::.iCm/

(3.4.6)

Note that these satisfy the relation

CmC1;i !DmC1;i D Cm;iC1 !Dm;i (3.4.7)

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 126 — #148 ✐
✐

✐ ✐

126 Chapter 3. Interpolation and Extrapolation

which is useful in proving the recurrences

DmC1;i D
Cm;iC1.Cm;iC1 !Dm;i /!
x!xi

x!xiCmC1

"
Dm;i ! Cm;iC1

CmC1;i D

!
x!xi

x!xiCmC1

"
Dm;i .Cm;iC1 !Dm;i /

!
x!xi

x!xiCmC1

"
Dm;i ! Cm;iC1

(3.4.8)

The class for rational function interpolation is identical to that for polynomial
interpolation in every way, except, of course, for the different method implemented
in rawinterp. See the end of !3.2 for usage. Plausible values forM are in the range
4 to 7.

struct Rat_interp : Base_interpinterp 1d.h
Diagonal rational function interpolation object. Construct with x and y vectors, and the number
m of points to be used locally, then call interp for interpolated values.
{

Doub dy;
Rat_interp(VecDoub_I &xv, VecDoub_I &yv, Int m)

: Base_interp(xv,&yv[0],m), dy(0.) {}
Doub rawinterp(Int jl, Doub x);

};

Doub Rat_interp::rawinterp(Int jl, Doub x)
Given a value x, and using pointers to data xx and yy, this routine returns an interpolated value
y, and stores an error estimate dy. The returned value is obtained by mm-point diagonal rational
function interpolation on the subrange xx[jl..jl+mm-1].
{

const Doub TINY=1.0e-99; A small number.
Int m,i,ns=0;
Doub y,w,t,hh,h,dd;
const Doub *xa = &xx[jl], *ya = &yy[jl];
VecDoub c(mm),d(mm);
hh=abs(x-xa[0]);
for (i=0;i<mm;i++) {

h=abs(x-xa[i]);
if (h == 0.0) {

dy=0.0;
return ya[i];

} else if (h < hh) {
ns=i;
hh=h;

}
c[i]=ya[i];
d[i]=ya[i]+TINY; The TINY part is needed to prevent a rare zero-over-zero

condition.}
y=ya[ns--];
for (m=1;m<mm;m++) {

for (i=0;i<mm-m;i++) {
w=c[i+1]-d[i];
h=xa[i+m]-x; h will never be zero, since this was tested in the initial-

izing loop.t=(xa[i]-x)*d[i]/h;
dd=t-c[i+1];
if (dd == 0.0) throw("Error in routine ratint");
This error condition indicates that the interpolating function has a pole at the
requested value of x.
dd=w/dd;
d[i]=c[i+1]*dd;
c[i]=t*dd;

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 127 — #149 ✐
✐

✐ ✐

3.4 Rational Function Interpolation and Extrapolation 127

}
y += (dy=(2*(ns+1) < (mm-m) ? c[ns+1] : d[ns--]));

}
return y;

}

3.4.1 Barycentric Rational Interpolation
Suppose one tries to use the above algorithm to construct a global approxima-

tion on the entire table of values using all the given nodes x0; x1; : : : ; xN!1. One
potential drawback is that the approximation can have poles inside the interpolation
interval where the denominator in (3.4.1) vanishes, even if the original function has
no poles there. An even greater (related) hazard is that we have allowed the order of
the approximation to grow to N ! 1, probably much too large.

An alternative algorithm can be derived [2] that has no poles anywhere on the
real axis, and that allows the actual order of the approximation to be specified to be
any integer d < N . The trick is to make the degree of both the numerator and the
denominator in equation (3.4.1) be N ! 1. This requires that the p’s and the q’s not
be independent, so that equation (3.4.2) no longer holds.

The algorithm utilizes the barycentric form of the rational interpolant

R.x/ D

N!1X

iD0

wi

x ! xi
yi

N!1X

iD0

wi

x ! xi

(3.4.9)

One can show that by a suitable choice of the weights wi , every rational inter-
polant can be written in this form, and that, as a special case, so can polynomial
interpolants [3]. It turns out that this form has many nice numerical properties. Bary-
centric rational interpolation competes very favorably with splines: its error is often
smaller, and the resulting approximation is infinitely smooth (unlike splines).

Suppose we want our rational interpolant to have approximation order d , i.e., if
the spacing of the points is O.h/, the error is O.hdC1/ as h! 0. Then the formula
for the weights is

wk D
kX

iDk!d
0"i<N!d

.!1/k
iCdY

jDi
j¤k

1

xk ! xj
(3.4.10)

For example,

wk D .!1/k ; d D 0

wk D .!1/k!1
!

1

xk ! xk!1
C 1

xkC1 ! xk

"
; d D 1

(3.4.11)

In the last equation, you omit the terms in w0 and wN!1 that refer to out-of-range
values of xk .

Here is a routine that implements barycentric rational interpolation. Given a
set of N nodes and a desired order d , with d < N , it first computes the weights
wk . Then subsequent calls to interp evaluate the interpolant using equation (3.4.9).
Note that the parameter jl of rawinterp is not used, since the algorithm is designed
to construct an approximation on the entire interval at once.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 128 — #150 ✐
✐

✐ ✐

128 Chapter 3. Interpolation and Extrapolation

The workload to construct the weights is of orderO.Nd/ operations. For small
d , this is not too different from splines. Note, however, that the workload for each
subsequent interpolated value is O.N/, not O.d/ as for splines.

struct BaryRat_interp : Base_interpinterp 1d.h
Barycentric rational interpolation object. After constructing the object, call interp for inter-
polated values. Note that no error estimate dy is calculated.
{

VecDoub w;
Int d;
BaryRat_interp(VecDoub_I &xv, VecDoub_I &yv, Int dd);
Doub rawinterp(Int jl, Doub x);
Doub interp(Doub x);

};

BaryRat_interp::BaryRat_interp(VecDoub_I &xv, VecDoub_I &yv, Int dd)
: Base_interp(xv,&yv[0],xv.size()), w(n), d(dd)

Constructor arguments are x and y vectors of length n, and order d of desired approximation.
{

if (n<=d) throw("d too large for number of points in BaryRat_interp");
for (Int k=0;k<n;k++) { Compute weights from equation (3.4.10).

Int imin=MAX(k-d,0);
Int imax = k >= n-d ? n-d-1 : k;
Doub temp = imin & 1 ? -1.0 : 1.0;
Doub sum=0.0;
for (Int i=imin;i<=imax;i++) {

Int jmax=MIN(i+d,n-1);
Doub term=1.0;
for (Int j=i;j<=jmax;j++) {

if (j==k) continue;
term *= (xx[k]-xx[j]);

}
term=temp/term;
temp=-temp;
sum += term;

}
w[k]=sum;

}
}
Doub BaryRat_interp::rawinterp(Int jl, Doub x)
Use equation (3.4.9) to compute the barycentric rational interpolant. Note that jl is not used
since the approximation is global; it is included only for compatibility with Base_interp.
{

Doub num=0,den=0;
for (Int i=0;i<n;i++) {

Doub h=x-xx[i];
if (h == 0.0) {

return yy[i];
} else {

Doub temp=w[i]/h;
num += temp*yy[i];
den += temp;

}
}
return num/den;

}
Doub BaryRat_interp::interp(Doub x) {
No need to invoke hunt or locate since the interpolation is global, so override interp to simply
call rawinterp directly with a dummy value of jl.

return rawinterp(1,x);
}

It is wise to start with small values of d before trying larger values.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 129 — #151 ✐
✐

✐ ✐

3.5 Coefficients of the Interpolating Polynomial 129

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
!2.2.[1]

Floater, M.S., and Hormann, K. 2006+, “Barycentric Rational Interpolation with No Poles and
High Rates of Approximation,” at http://www.in.tu-clausthal.de/fileadmin/
homes/techreports/ifi0606hormann.pdf.[2]

Berrut, J.-P., and Trefethen, L.N. 2004, “Barycentric Lagrange Interpolation,” SIAM Review,
vol. 46, pp. 501–517.[3]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), !6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.5 Coefficients of the Interpolating Polynomial
Occasionally you may wish to know not the value of the interpolating poly-

nomial that passes through a (small!) number of points, but the coefficients of that
polynomial. A valid use of the coefficients might be, for example, to compute simul-
taneous interpolated values of the function and of several of its derivatives (see !5.1),
or to convolve a segment of the tabulated function with some other function, where
the moments of that other function (i.e., its convolution with powers of x) are known
analytically.

Please be certain, however, that the coefficients are what you need. Generally
the coefficients of the interpolating polynomial can be determined much less accu-
rately than its value at a desired abscissa. Therefore, it is not a good idea to determine
the coefficients only for use in calculating interpolating values. Values thus calcu-
lated will not pass exactly through the tabulated points, for example, while values
computed by the routines in !3.1 – !3.3 will pass exactly through such points.

Also, you should not mistake the interpolating polynomial (and its coefficients)
for its cousin, the best-fit polynomial through a data set. Fitting is a smoothing pro-
cess, since the number of fitted coefficients is typically much less than the number
of data points. Therefore, fitted coefficients can be accurately and stably determined
even in the presence of statistical errors in the tabulated values. (See !14.9.) Inter-
polation, where the number of coefficients and number of tabulated points are equal,
takes the tabulated values as perfect. If they in fact contain statistical errors, these
can be magnified into oscillations of the interpolating polynomial in between the
tabulated points.

As before, we take the tabulated points to be yi ! y.xi /. If the interpolating
polynomial is written as

y D c0 C c1x C c2x2 C " " "C cN!1xN!1 (3.5.1)

then the ci ’s are required to satisfy the linear equation
2

66664

1 x0 x20 " " " xN!10

1 x1 x21 " " " xN!11
:::

:::
:::

:::
1 xN!1 x2N!1 " " " xN!1N!1

3

77775
"

2

66664

c0

c1
:::

cN!1

3

77775
D

2

66664

y0

y1
:::

yN!1

3

77775
(3.5.2)

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 130 — #152 ✐
✐

✐ ✐

130 Chapter 3. Interpolation and Extrapolation

This is a Vandermonde matrix, as described in !2.8. One could in principle solve
equation (3.5.2) by standard techniques for linear equations generally (!2.3); how-
ever, the special method that was derived in !2.8 is more efficient by a large factor,
of order N , so it is much better.

Remember that Vandermonde systems can be quite ill-conditioned. In such a
case, no numerical method is going to give a very accurate answer. Such cases do
not, please note, imply any difficulty in finding interpolated values by the methods
of !3.2, but only difficulty in finding coefficients.

Like the routine in !2.8, the following is due to G.B. Rybicki.

void polcoe(VecDoub_I &x, VecDoub_I &y, VecDoub_O &cof)polcoef.h
Given arrays x[0..n-1] and y[0..n-1] containing a tabulated function yi D f .xi /, this routine

returns an array of coefficients cof[0..n-1], such that yi D
Pn!1
jD0 cofj x

j
i .

{
Int k,j,i,n=x.size();
Doub phi,ff,b;
VecDoub s(n);
for (i=0;i<n;i++) s[i]=cof[i]=0.0;
s[n-1]= -x[0];
for (i=1;i<n;i++) { Coefficients si of the master polynomial P.x/ are

found by recurrence.for (j=n-1-i;j<n-1;j++)
s[j] -= x[i]*s[j+1];

s[n-1] -= x[i];
}
for (j=0;j<n;j++) {

phi=n;
for (k=n-1;k>0;k--) The quantity phi D Q

j¤k.xj ! xk/ is found as a
derivative of P.xj /.phi=k*s[k]+x[j]*phi;

ff=y[j]/phi;
b=1.0; Coefficients of polynomials in each term of the La-

grange formula are found by synthetic division of
P.x/ by .x ! xj /. The solution ck is accumu-
lated.

for (k=n-1;k>=0;k--) {
cof[k] += b*ff;
b=s[k]+x[j]*b;

}
}

}

3.5.1 Another Method

Another technique is to make use of the function value interpolation routine
already given (polint; !3.2). If we interpolate (or extrapolate) to find the value of
the interpolating polynomial at x D 0, then this value will evidently be c0. Now we
can subtract c0 from the yi ’s and divide each by its corresponding xi . Throwing out
one point (the one with smallest xi is a good candidate), we can repeat the procedure
to find c1, and so on.

It is not instantly obvious that this procedure is stable, but we have generally
found it to be somewhat more stable than the routine immediately preceding. This
method is of orderN 3, while the preceding one was of orderN 2. You will find, how-
ever, that neither works very well for large N , because of the intrinsic ill-condition
of the Vandermonde problem. In single precision, N up to 8 or 10 is satisfactory;
about double this in double precision.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 131 — #153 ✐
✐

✐ ✐

3.5 Coefficients of the Interpolating Polynomial 131

void polcof(VecDoub_I &xa, VecDoub_I &ya, VecDoub_O &cof) polcoef.h
Given arrays xa[0..n-1] and ya[0..n-1] containing a tabulated function yai D f .xai /, this

routine returns an array of coefficients cof[0..n-1], such that yai D
Pn!1
jD0 cofj xa

j
i .

{
Int k,j,i,n=xa.size();
Doub xmin;
VecDoub x(n),y(n);
for (j=0;j<n;j++) {

x[j]=xa[j];
y[j]=ya[j];

}
for (j=0;j<n;j++) { Fill a temporary vector whose size

decreases as each coefficient is
found.

VecDoub x_t(n-j),y_t(n-j);
for (k=0;k<n-j;k++) {

x_t[k]=x[k];
y_t[k]=y[k];

}
Poly_interp interp(x,y,n-j);
cof[j] = interp.rawinterp(0,0.); Extrapolate to x D 0.
xmin=1.0e99;
k = -1;
for (i=0;i<n-j;i++) { Find the remaining xi of smallest

absolute valueif (abs(x[i]) < xmin) {
xmin=abs(x[i]);
k=i;

}
if (x[i] != 0.0) (meanwhile reducing all the terms)

y[i]=(y[i]-cof[j])/x[i];
}
for (i=k+1;i<n-j;i++) { and eliminate it.

y[i-1]=y[i];
x[i-1]=x[i];

}
}

}

If the point x D 0 is not in (or at least close to) the range of the tabulated
xi ’s, then the coefficients of the interpolating polynomial will in general become
very large. However, the real “information content” of the coefficients is in small
differences from the “translation-induced” large values. This is one cause of ill-
conditioning, resulting in loss of significance and poorly determined coefficients. In
this case, you should consider redefining the origin of the problem, to put x D 0 in a
sensible place.

Another pathology is that, if too high a degree of interpolation is attempted on a
smooth function, the interpolating polynomial will attempt to use its high-degree co-
efficients, in combinations with large and almost precisely canceling combinations,
to match the tabulated values down to the last possible epsilon of accuracy. This
effect is the same as the intrinsic tendency of the interpolating polynomial values
to oscillate (wildly) between its constrained points and would be present even if the
machine’s floating precision were infinitely good. The above routines polcoe and
polcof have slightly different sensitivities to the pathologies that can occur.

Are you still quite certain that using the coefficients is a good idea?

CITED REFERENCES AND FURTHER READING:

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods; reprinted 1994 (New York:
Dover), !5.2.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 132 — #154 ✐
✐

✐ ✐

132 Chapter 3. Interpolation and Extrapolation

3.6 Interpolation on a Grid in Multidimensions
In multidimensional interpolation, we seek an estimate of a function of more

than one independent variable, y.x1; x2; : : : ; xn/. The Great Divide is, Are we given
a complete set of tabulated values on an n-dimensional grid? Or, do we know func-
tion values only on some scattered set of points in the n-dimensional space? In one
dimension, the question never arose, because any set of xi ’s, once sorted into as-
cending order, could be viewed as a valid one-dimensional grid (regular spacing not
being a requirement).

As the number of dimensions n gets large, maintaining a full grid becomes
rapidly impractical, because of the explosion in the number of gridpoints. Methods
that work with scattered data, to be considered in !3.7, then become the methods
of choice. Don’t, however, make the mistake of thinking that such methods are
intrinsically more accurate than grid methods. In general they are less accurate. Like
the proverbial three-legged dog, they are remarkable because they work at all, not
because they work, necessarily, well!

Both kinds of methods are practical in two dimensions, and some other kinds as
well. For example, finite element methods, of which triangulation is the most com-
mon, find ways to impose some kind of geometrically regular structure on scattered
points, and then use that structure for interpolation. We will treat two-dimensional
interpolation by triangulation in detail in !21.6; that section should be considered as
a continuation of the discussion here.

In the remainder of this section, we consider only the case of interpolating on
a grid, and we implement in code only the (most common) case of two dimensions.
All of the methods given generalize to three dimensions in an obvious way. When
we implement methods for scattered data, in !3.7, the treatment will be for general n.

In two dimensions, we imagine that we are given a matrix of functional values
yij , with i D 0; : : : ;M ! 1 and j D 0; : : : ; N ! 1. We are also given an array of x1
values x1i , and an array of x2 values x2j , with i and j as just stated. The relation of
these input quantities to an underlying function y.x1; x2/ is just

yij D y.x1i ; x2j / (3.6.1)

We want to estimate, by interpolation, the function y at some untabulated point
.x1; x2/.

An important concept is that of the grid square in which the point .x1; x2/
falls, that is, the four tabulated points that surround the desired interior point. For
convenience, we will number these points from 0 to 3, counterclockwise starting
from the lower left. More precisely, if

x1i " x1 " x1.iC1/
x2j " x2 " x2.jC1/

(3.6.2)

defines values of i and j , then

y0 # yij
y1 # y.iC1/j
y2 # y.iC1/.jC1/
y3 # yi.jC1/

(3.6.3)

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 133 — #155 ✐
✐

✐ ✐

3.6 Interpolation on a Grid in Multidimensions 133

The simplest interpolation in two dimensions is bilinear interpolation on the
grid square. Its formulas are

t ! .x1 " x1i /=.x1.iC1/ " x1i /
u ! .x2 " x2j /=.x2.jC1/ " x2j /

(3.6.4)

(so that t and u each lie between 0 and 1) and

y.x1; x2/ D .1 " t /.1 " u/y0 C t .1 " u/y1 C tuy2 C .1 " t /uy3 (3.6.5)

Bilinear interpolation is frequently “close enough for government work.” As the
interpolating point wanders from grid square to grid square, the interpolated func-
tion value changes continuously. However, the gradient of the interpolated function
changes discontinuously at the boundaries of each grid square.

We can easily implement an object for bilinear interpolation by grabbing pieces
of “machinery” from our one-dimensional interpolation classes:

struct Bilin_interp { interp 2d.h
Object for bilinear interpolation on a matrix. Construct with a vector of x1 values, a vector of
x2 values, and a matrix of tabulated function values yij . Then call interp for interpolated
values.

Int m,n;
const MatDoub &y;
Linear_interp x1terp, x2terp;

Bilin_interp(VecDoub_I &x1v, VecDoub_I &x2v, MatDoub_I &ym)
: m(x1v.size()), n(x2v.size()), y(ym),
x1terp(x1v,x1v), x2terp(x2v,x2v) {} Construct dummy 1-dim interpola-

tions for their locate and hunt
functions.Doub interp(Doub x1p, Doub x2p) {

Int i,j;
Doub yy, t, u;
i = x1terp.cor ? x1terp.hunt(x1p) : x1terp.locate(x1p);
j = x2terp.cor ? x2terp.hunt(x2p) : x2terp.locate(x2p);
Find the grid square.
t = (x1p-x1terp.xx[i])/(x1terp.xx[i+1]-x1terp.xx[i]); Interpolate.
u = (x2p-x2terp.xx[j])/(x2terp.xx[j+1]-x2terp.xx[j]);
yy = (1.-t)*(1.-u)*y[i][j] + t*(1.-u)*y[i+1][j]

+ (1.-t)*u*y[i][j+1] + t*u*y[i+1][j+1];
return yy;

}
};

Here we declare two instances of Linear_interp, one for each direction, and use
them merely to do the bookkeeping on the arrays x1i and x2j — in particular, to
provide the “intelligent” table-searching mechanisms that we have come to rely on.
(The second occurrence of x1v and x2v in the constructors is just a placeholder;
there are not really any one-dimensional “y” arrays.)

Usage of Bilin_interp is just what you’d expect:

Int m=..., n=...;
MatDoub yy(m,n);
VecDoub x1(m), x2(n);
...
Bilin_interp myfunc(x1,x2,yy);

followed (any number of times) by

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 134 — #156 ✐
✐

✐ ✐

134 Chapter 3. Interpolation and Extrapolation

Doub x1,x2,y;
...
y = myfunc.interp(x1,x2);

Bilinear interpolation is a good place to start, in two dimensions, unless you posi-
tively know that you need something fancier.

There are two distinctly different directions that one can take in going beyond
bilinear interpolation to higher-order methods: One can use higher order to obtain
increased accuracy for the interpolated function (for sufficiently smooth functions!),
without necessarily trying to fix up the continuity of the gradient and higher deriva-
tives. Or, one can make use of higher order to enforce smoothness of some of these
derivatives as the interpolating point crosses grid-square boundaries. We will now
consider each of these two directions in turn.

3.6.1 Higher Order for Accuracy
The basic idea is to break up the problem into a succession of one-dimensional

interpolations. If we want to do m-1 order interpolation in the x1 direction, and n-1
order in the x2 direction, we first locate an m ! n sub-block of the tabulated func-
tion matrix that contains our desired point .x1; x2/. We then do m one-dimensional
interpolations in the x2 direction, i.e., on the rows of the sub-block, to get function
values at the points .x1i ; x2/, with m values of i . Finally, we do a last interpolation
in the x1 direction to get the answer.

Again using the previous one-dimensional machinery, this can all be coded very
concisely as

struct Poly2D_interp {interp 2d.h
Object for two-dimensional polynomial interpolation on a matrix. Construct with a vector of x1
values, a vector of x2 values, a matrix of tabulated function values yij , and integers to specify
the number of points to use locally in each direction. Then call interp for interpolated values.

Int m,n,mm,nn;
const MatDoub &y;
VecDoub yv;
Poly_interp x1terp, x2terp;

Poly2D_interp(VecDoub_I &x1v, VecDoub_I &x2v, MatDoub_I &ym,
Int mp, Int np) : m(x1v.size()), n(x2v.size()),
mm(mp), nn(np), y(ym), yv(m),
x1terp(x1v,yv,mm), x2terp(x2v,x2v,nn) {} Dummy 1-dim interpolations for their

locate and hunt functions.
Doub interp(Doub x1p, Doub x2p) {

Int i,j,k;
i = x1terp.cor ? x1terp.hunt(x1p) : x1terp.locate(x1p);
j = x2terp.cor ? x2terp.hunt(x2p) : x2terp.locate(x2p);
Find grid block.
for (k=i;k<i+mm;k++) { mm interpolations in the x2 direction.

x2terp.yy = &y[k][0];
yv[k] = x2terp.rawinterp(j,x2p);

}
return x1terp.rawinterp(i,x1p); A final interpolation in the x1 direc-

tion.}
};

The user interface is the same as for Bilin_interp, except that the constructor
has two additional arguments that specify the number of points (order plus one) to
be used locally in, respectively, the x1 and x2 interpolations. Typical values will be
in the range 3 to 7.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 135 — #157 ✐
✐

✐ ✐

3.6 Interpolation on a Grid in Multidimensions 135

Code stylists won’t like some of the details in Poly2D_interp (see discussion in !3.1
immediately following Base_interp). As we loop over the rows of the sub-block, we reach
into the guts of x2terp and repoint its yy array to a row of our y matrix. Further, we alter
the contents of the array yv, for which x1terp has stored a pointer, on the fly. None of this is
particularly dangerous as long as we control the implementations in both Base_interp and
Poly2D_interp; and it makes for a very efficient implementation. You should view these
two classes as not just (implicitly) friend classes, but as really intimate friends.

3.6.2 Higher Order for Smoothness: Bicubic Spline
A favorite technique for obtaining smoothness in two-dimensional interpola-

tion is the bicubic spline. To set up a bicubic spline, you (one time) construct M
one-dimensional splines across the rows of the two-dimensional matrix of function
values. Then, for each desired interpolated value you proceed as follows: (1) Per-
formM spline interpolations to get a vector of values y.x1i ; x2/, i D 0; : : : ;M ! 1.
(2) Construct a one-dimensional spline through those values. (3) Finally, spline-
interpolate to the desired value y.x1; x2/.

If this sounds like a lot of work, well, yes, it is. The one-time setup work
scales as the table size M "N , while the work per interpolated value scales roughly
as M logM C N , both with pretty hefty constants in front. This is the price that
you pay for the desirable characteristics of splines that derive from their nonlocality.
For tables with modest M and N , less than a few hundred, say, the cost is usually
tolerable. If it’s not, then fall back to the previous local methods.

Again a very concise implementation is possible:

struct Spline2D_interp { interp 2d.h
Object for two-dimensional cubic spline interpolation on a matrix. Construct with a vector of x1
values, a vector of x2 values, and a matrix of tabulated function values yij . Then call interp
for interpolated values.

Int m,n;
const MatDoub &y;
const VecDoub &x1;
VecDoub yv;
NRvector<Spline_interp*> srp;

Spline2D_interp(VecDoub_I &x1v, VecDoub_I &x2v, MatDoub_I &ym)
: m(x1v.size()), n(x2v.size()), y(ym), yv(m), x1(x1v), srp(m) {
for (Int i=0;i<m;i++) srp[i] = new Spline_interp(x2v,&y[i][0]);
Save an array of pointers to 1-dim row splines.

}

~Spline2D_interp(){
for (Int i=0;i<m;i++) delete srp[i]; We need a destructor to clean up.

}

Doub interp(Doub x1p, Doub x2p) {
for (Int i=0;i<m;i++) yv[i] = (*srp[i]).interp(x2p);
Interpolate on each row.
Spline_interp scol(x1,yv); Construct the column spline,
return scol.interp(x1p); and evaluate it.

}
};

The reason for that ugly vector of pointers to Spline_interp objects is that we
need to initialize each row spline separately, with data from the appropriate row. The
user interface is the same as Bilin_interp, above.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 136 — #158 ✐
✐

✐ ✐

136 Chapter 3. Interpolation and Extrapolation

y

∂y/∂x1

∂y/∂x2

∂2y/∂x1∂x2

x2 = x2u

x2 = x2l

x 1
 =

x
1u

x 1
 =

x
1
l

0 1 2 3

pt. 0
us

er
su

pp
lie

s

the
se

 va
lue

s

pt. 3

pt. 1

pt. 2

d2

d1

(a) (b)

⊗
desired pt.
(x1,x2)

pt. number

Figure 3.6.1. (a) Labeling of points used in the two-dimensional interpolation routines bcuint and
bcucof. (b) For each of the four points in (a), the user supplies one function value, two first derivatives,
and one cross-derivative, a total of 16 numbers.

3.6.3 Higher Order for Smoothness: Bicubic Interpolation
Bicubic interpolation gives the same degree of smoothness as bicubic spline

interpolation, but it has the advantage of being a local method. Thus, after you set it
up, a function interpolation costs only a constant, plus logM C logN , to find your
place in the table. Unfortunately, this advantage comes with a lot of complexity in
coding. Here, we will give only some building blocks for the method, not a complete
user interface.

Bicubic splines are in fact a special case of bicubic interpolation. In the gen-
eral case, however, we leave the values of all derivatives at the grid points as freely
specifiable. You, the user, can specify them any way you want. In other words,
you specify at each grid point not just the function y.x1; x2/, but also the gradients
@y=@x1 ! y;1, @y=@x2 ! y;2 and the cross derivative @2y=@x1@x2 ! y;12 (see
Figure 3.6.1). Then an interpolating function that is cubic in the scaled coordinates t
and u (equation 3.6.4) can be found, with the following properties: (i) The values of
the function and the specified derivatives are reproduced exactly on the grid points,
and (ii) the values of the function and the specified derivatives change continuously
as the interpolating point crosses from one grid square to another.

It is important to understand that nothing in the equations of bicubic interpola-
tion requires you to specify the extra derivatives correctly! The smoothness proper-
ties are tautologically “forced,” and have nothing to do with the “accuracy” of the
specified derivatives. It is a separate problem for you to decide how to obtain the
values that are specified. The better you do, the more accurate the interpolation will
be. But it will be smooth no matter what you do.

Best of all is to know the derivatives analytically, or to be able to compute them
accurately by numerical means, at the grid points. Next best is to determine them by
numerical differencing from the functional values already tabulated on the grid. The
relevant code would be something like this (using centered differencing):

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 137 — #159 ✐
✐

✐ ✐

3.6 Interpolation on a Grid in Multidimensions 137

y1a[j][k]=(ya[j+1][k]-ya[j-1][k])/(x1a[j+1]-x1a[j-1]);
y2a[j][k]=(ya[j][k+1]-ya[j][k-1])/(x2a[k+1]-x2a[k-1]);
y12a[j][k]=(ya[j+1][k+1]-ya[j+1][k-1]-ya[j-1][k+1]+ya[j-1][k-1])

/((x1a[j+1]-x1a[j-1])*(x2a[k+1]-x2a[k-1]));

To do a bicubic interpolation within a grid square, given the function y and
the derivatives y1, y2, y12 at each of the four corners of the square, there are two
steps: First obtain the 16 quantities cij ; i; j D 0; : : : ; 3 using the routine bcucof
below. (The formulas that obtain the c’s from the function and derivative values are
just a complicated linear transformation, with coefficients that, having been deter-
mined once in the mists of numerical history, can be tabulated and forgotten.) Next,
substitute the c’s into any or all of the following bicubic formulas for function and
derivatives, as desired:

y.x1; x2/ D
3X

iD0

3X

jD0
cij t

iuj

y;1.x1; x2/ D
3X

iD0

3X

jD0
icij t

i!1uj .dt=dx1/

y;2.x1; x2/ D
3X

iD0

3X

jD0
jcij t

iuj!1.du=dx2/

y;12.x1; x2/ D
3X

iD0

3X

jD0
ijcij t

i!1uj!1.dt=dx1/.du=dx2/

(3.6.6)

where t and u are again given by equation (3.6.4).

void bcucof(VecDoub_I &y, VecDoub_I &y1, VecDoub_I &y2, VecDoub_I &y12, interp 2d.h
const Doub d1, const Doub d2, MatDoub_O &c) {

Given arrays y[0..3], y1[0..3], y2[0..3], and y12[0..3], containing the function, gradients,
and cross-derivative at the four grid points of a rectangular grid cell (numbered counterclockwise
from the lower left), and given d1 and d2, the length of the grid cell in the 1 and 2 directions, this
routine returns the table c[0..3][0..3] that is used by routine bcuint for bicubic interpolation.

static Int wt_d[16*16]=
{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
-3, 0, 0, 3, 0, 0, 0, 0,-2, 0, 0,-1, 0, 0, 0, 0,
2, 0, 0,-2, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0,-3, 0, 0, 3, 0, 0, 0, 0,-2, 0, 0,-1,
0, 0, 0, 0, 2, 0, 0,-2, 0, 0, 0, 0, 1, 0, 0, 1,
-3, 3, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0,-2,-1, 0, 0,
9,-9, 9,-9, 6, 3,-3,-6, 6,-6,-3, 3, 4, 2, 1, 2,
-6, 6,-6, 6,-4,-2, 2, 4,-3, 3, 3,-3,-2,-1,-1,-2,
2,-2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 1, 1, 0, 0,
-6, 6,-6, 6,-3,-3, 3, 3,-4, 4, 2,-2,-2,-2,-1,-1,
4,-4, 4,-4, 2, 2,-2,-2, 2,-2,-2, 2, 1, 1, 1, 1};

Int l,k,j,i;
Doub xx,d1d2=d1*d2;
VecDoub cl(16),x(16);
static MatInt wt(16,16,wt_d);
for (i=0;i<4;i++) { Pack a temporary vector x.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 138 — #160 ✐
✐

✐ ✐

138 Chapter 3. Interpolation and Extrapolation

x[i]=y[i];
x[i+4]=y1[i]*d1;
x[i+8]=y2[i]*d2;
x[i+12]=y12[i]*d1d2;

}
for (i=0;i<16;i++) { Matrix-multiply by the stored table.

xx=0.0;
for (k=0;k<16;k++) xx += wt[i][k]*x[k];
cl[i]=xx;

}
l=0;
for (i=0;i<4;i++) Unpack the result into the output table.

for (j=0;j<4;j++) c[i][j]=cl[l++];
}

The implementation of equation (3.6.6), which performs a bicubic interpolation,
gives back the interpolated function value and the two gradient values, and uses the
above routine bcucof, is simply:

void bcuint(VecDoub_I &y, VecDoub_I &y1, VecDoub_I &y2, VecDoub_I &y12,interp 2d.h
const Doub x1l, const Doub x1u, const Doub x2l, const Doub x2u,
const Doub x1, const Doub x2, Doub &ansy, Doub &ansy1, Doub &ansy2) {

Bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as described in
bcucof); x1l and x1u, the lower and upper coordinates of the grid square in the 1 direction;
x2l and x2u likewise for the 2 direction; and x1,x2, the coordinates of the desired point for
the interpolation. The interpolated function value is returned as ansy, and the interpolated
gradient values as ansy1 and ansy2. This routine calls bcucof.

Int i;
Doub t,u,d1=x1u-x1l,d2=x2u-x2l;
MatDoub c(4,4);
bcucof(y,y1,y2,y12,d1,d2,c); Get the c’s.
if (x1u == x1l || x2u == x2l)

throw("Bad input in routine bcuint");
t=(x1-x1l)/d1; Equation (3.6.4).
u=(x2-x2l)/d2;
ansy=ansy2=ansy1=0.0;
for (i=3;i>=0;i--) { Equation (3.6.6).

ansy=t*ansy+((c[i][3]*u+c[i][2])*u+c[i][1])*u+c[i][0];
ansy2=t*ansy2+(3.0*c[i][3]*u+2.0*c[i][2])*u+c[i][1];
ansy1=u*ansy1+(3.0*c[3][i]*t+2.0*c[2][i])*t+c[1][i];

}
ansy1 /= d1;
ansy2 /= d2;

}

You can combine the best features of bicubic interpolation and bicubic splines
by using splines to compute values for the necessary derivatives at the grid points,
storing these values, and then using bicubic interpolation, with an efficient table-
searching method, for the actual function interpolations. Unfortunately this is be-
yond our scope here.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, !25.2.

Kinahan, B.F., and Harm, R. 1975, “Chemical Composition and the Hertzsprung Gap,” Astro-
physical Journal, vol. 200, pp. 330–335.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 139 — #161 ✐
✐

✐ ✐

3.7 Interpolation on Scattered Data in Multidimensions 139

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), !5.2.7.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), !7.7.

3.7 Interpolation on Scattered Data in
Multidimensions

We now leave behind, if with some trepidation, the orderly world of regular
grids. Courage is required. We are given an arbitrarily scattered set of N data points
.xi ; yi /, i D 0; : : : ; N!1 in n-dimensional space. Here xi denotes an n-dimensional
vector of independent variables, .x1i ; x2i ; : : : ; xni /, and yi is the value of the func-
tion at that point.

In this section we discuss two of the most widely used general methods for
this problem, radial basis function (RBF) interpolation, and kriging. Both of these
methods are expensive. By that we mean that they require O.N 3/ operations to ini-
tially digest a set of data points, followed by O.N/ operations for each interpolated
value. Kriging is also able to supply an error estimate — but at the rather high cost of
O.N 2/ per value. Shepard interpolation, discussed below, is a variant of RBF that at
least avoids the O.N 3/ initial work; otherwise these workloads effectively limit the
usefulness of these general methods to values ofN . 104. It is therefore worthwhile
for you to consider whether you have any other options. Two of these are

" If n is not too large (meaning, usually, n D 2), and if the data points are fairly
dense, then consider triangulation, discussed in !21.6. Triangulation is an
example of a finite element method. Such methods construct some semblance
of geometric regularity and then exploit that construction to advantage. Mesh
generation is a closely related subject.

" If your accuracy goals will tolerate it, consider moving each data point to the
nearest point on a regular Cartesian grid and then using Laplace interpolation
(!3.8) to fill in the rest of the grid points. After that, you can interpolate on the
grid by the methods of !3.6. You will need to compromise between making
the grid very fine (to minimize the error introduced when you move the points)
and the compute time workload of the Laplace method.

If neither of these options seem attractive, and you can’t think of another one
that is, then try one or both of the two methods that we now discuss. RBF interpola-
tion is probably the more widely used of the two, but kriging is our personal favorite.
Which works better will depend on the details of your problem.

The related, but easier, problem of curve interpolation in multidimensions is
discussed at the end of this section.

3.7.1 Radial Basis Function Interpolation
The idea behind RBF interpolation is very simple: Imagine that every known

point j “influences” its surroundings the same way in all directions, according to

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 140 — #162 ✐
✐

✐ ✐

140 Chapter 3. Interpolation and Extrapolation

some assumed functional form !.r/ — the radial basis function — that is a function
only of radial distance r D jx ! xj j from the point. Let us try to approximate the
interpolating function everywhere by a linear combination of the !’s, centered on all
the known points,

y.x/ D
N!1X

iD0
wi!.jx ! xi j/ (3.7.1)

where the wi ’s are some unknown set of weights. How do we find these weights?
Well, we haven’t used the function values yi yet. The weights are determined by re-
quiring that the interpolation be exact at all the known data points. That is equivalent
to solving a set of N linear equations in N unknowns for the wi ’s:

yj D
N!1X

iD0
wi!.jxj ! xi j/ (3.7.2)

For many functional forms !, it can be proved, under various general assumptions,
that this set of equations is nondegenerate and can be readily solved by, e.g., LU
decomposition ("2.3). References [1,2] provide entry to the literature.

A variant on RBF interpolation is normalized radial basis function (NRBF) in-
terpolation, in which we require the sum of the basis functions to be unity or, equiv-
alently, replace equations (3.7.1) and (3.7.2) by

y.x/ D
PN!1
iD0 wi!.jx ! xi j/
PN!1
iD0 !.jx ! xi j/

(3.7.3)

and

yj

N!1X

iD0
!.jxj ! xi j/ D

N!1X

iD0
wi!.jxj ! xi j/ (3.7.4)

Equations (3.7.3) and (3.7.4) arise more naturally from a Bayesian statistical perspec-
tive [3]. However, there is no evidence that either the NRBF method is consistently
superior to the RBF method, or vice versa. It is easy to implement both methods in
the same code, leaving the choice to the user.

As we already mentioned, for N data points the one-time work to solve for the
weights byLU decomposition isO.N 3/. After that, the cost isO.N/ for each inter-
polation. Thus N " 103 is a rough dividing line (at 2007 desktop speeds) between
“easy” and “difficult.” If your N is larger, however, don’t despair: There are fast
multipole methods, beyond our scope here, with much more favorable scaling [1,4,5].
Another, much lower-tech, option is to use Shepard interpolation discussed later in
this section.

Here are a couple of objects that implement everything discussed thus far.
RBF_fn is a virtual base class whose derived classes will embody different func-
tional forms for rbf.r/ # !.r/. RBF_interp, via its constructor, digests your data
and solves the equations for the weights. The data points xi are input as an N $ n
matrix, and the code works for any dimension n. A boolean argument nrbf inputs
whether NRBF is to be used instead of RBF. You call interp to get an interpolated
function value at a new point x.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 141 — #163 ✐
✐

✐ ✐

3.7 Interpolation on Scattered Data in Multidimensions 141

struct RBF_fn { interp rbf.h
Abstract base class template for any particular radial basis function. See specific examples
below.

virtual Doub rbf(Doub r) = 0;
};

struct RBF_interp {
Object for radial basis function interpolation using n points in dim dimensions. Call constructor
once, then interp as many times as desired.

Int dim, n;
const MatDoub &pts;
const VecDoub &vals;
VecDoub w;
RBF_fn &fn;
Bool norm;

RBF_interp(MatDoub_I &ptss, VecDoub_I &valss, RBF_fn &func, Bool nrbf=false)
: dim(ptss.ncols()), n(ptss.nrows()) , pts(ptss), vals(valss),
w(n), fn(func), norm(nrbf) {
Constructor. The n ! dim matrix ptss inputs the data points, the vector valss the function
values. func contains the chosen radial basis function, derived from the class RBF_fn. The
default value of nrbf gives RBF interpolation; set it to 1 for NRBF.

Int i,j;
Doub sum;
MatDoub rbf(n,n);
VecDoub rhs(n);
for (i=0;i<n;i++) { Fill the matrix !.jri "rj j/ and the r.h.s. vector.

sum = 0.;
for (j=0;j<n;j++) {

sum += (rbf[i][j] = fn.rbf(rad(&pts[i][0],&pts[j][0])));
}
if (norm) rhs[i] = sum*vals[i];
else rhs[i] = vals[i];

}
LUdcmp lu(rbf); Solve the set of linear equations.
lu.solve(rhs,w);

}

Doub interp(VecDoub_I &pt) {
Return the interpolated function value at a dim-dimensional point pt.

Doub fval, sum=0., sumw=0.;
if (pt.size() != dim) throw("RBF_interp bad pt size");
for (Int i=0;i<n;i++) { Sum over all tabulated points.

fval = fn.rbf(rad(&pt[0],&pts[i][0]));
sumw += w[i]*fval;
sum += fval;

}
return norm ? sumw/sum : sumw;

}

Doub rad(const Doub *p1, const Doub *p2) {
Euclidean distance.

Doub sum = 0.;
for (Int i=0;i<dim;i++) sum += SQR(p1[i]-p2[i]);
return sqrt(sum);

}
};

3.7.2 Radial Basis Functions in General Use
The most often used radial basis function is the multiquadric first used by Hardy,

circa 1970. The functional form is

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 142 — #164 ✐
✐

✐ ✐

142 Chapter 3. Interpolation and Extrapolation

!.r/ D .r2 C r20 /1=2 (3.7.5)

where r0 is a scale factor that you get to choose. Multiquadrics are said to be less
sensitive to the choice of r0 than some other functional forms.

In general, both for multiquadrics and for other functions, below, r0 should
be larger than the typical separation of points but smaller than the “outer scale” or
feature size of the function that you are interpolating. There can be several orders
of magnitude difference between the interpolation accuracy with a good choice for
r0, versus a poor choice, so it is definitely worth some experimentation. One way to
experiment is to construct an RBF interpolator omitting one data point at a time and
measuring the interpolation error at the omitted point.

The inverse multiquadric

!.r/ D .r2 C r20 /!1=2 (3.7.6)

gives results that are comparable to the multiquadric, sometimes better.
It might seem odd that a function and its inverse (actually, reciprocal) work

about equally well. The explanation is that what really matters is smoothness, and
certain properties of the function’s Fourier transform that are not very different be-
tween the multiquadric and its reciprocal. The fact that one increases monotonically
and the other decreases turns out to be almost irrelevant. However, if you want the
extrapolated function to go to zero far from all the data (where an accurate value is
impossible anyway), then the inverse multiquadric is a good choice.

The thin-plate spline radial basis function is

!.r/ D r2 log.r=r0/ (3.7.7)

with the limiting value !.0/ D 0 assumed. This function has some physical justi-
fication in the energy minimization problem associated with warping a thin elastic
plate. There is no indication that it is generally better than either of the above forms,
however.

The Gaussian radial basis function is just what you’d expect,

!.r/ D exp
!
!12r

2=r20
"

(3.7.8)

The interpolation accuracy using Gaussian basis functions can be very sensitive to
r0, and they are often avoided for this reason. However, for smooth functions and
with an optimal r0, very high accuracy can be achieved. The Gaussian also will
extrapolate any function to zero far from the data, and it gets to zero quickly.

Other functions are also in use, for example those of Wendland [6]. There is
a large literature in which the above choices for basis functions are tested against
specific functional forms or experimental data sets [1,2,7]. Few, if any, general rec-
ommendations emerge. We suggest that you try the alternatives in the order listed
above, starting with multiquadrics, and that you not omit experimenting with differ-
ent choices of the scale parameters r0.

The functions discussed are implemented in code as:

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 143 — #165 ✐
✐

✐ ✐

3.7 Interpolation on Scattered Data in Multidimensions 143

struct RBF_multiquadric : RBF_fn { interp rbf.h
Instantiate this and send to RBF_interp to get multiquadric interpolation.

Doub r02;
RBF_multiquadric(Doub scale=1.) : r02(SQR(scale)) {}
Constructor argument is the scale factor. See text.
Doub rbf(Doub r) { return sqrt(SQR(r)+r02); }

};

struct RBF_thinplate : RBF_fn {
Same as above, but for thin-plate spline.

Doub r0;
RBF_thinplate(Doub scale=1.) : r0(scale) {}
Doub rbf(Doub r) { return r <= 0. ? 0. : SQR(r)*log(r/r0); }

};

struct RBF_gauss : RBF_fn {
Same as above, but for Gaussian.

Doub r0;
RBF_gauss(Doub scale=1.) : r0(scale) {}
Doub rbf(Doub r) { return exp(-0.5*SQR(r/r0)); }

};

struct RBF_inversemultiquadric : RBF_fn {
Same as above, but for inverse multiquadric.

Doub r02;
RBF_inversemultiquadric(Doub scale=1.) : r02(SQR(scale)) {}
Doub rbf(Doub r) { return 1./sqrt(SQR(r)+r02); }

};

Typical use of the objects in this section should look something like this:

Int npts=...,ndim=...;
Doub r0=...;
MatDoub pts(npts,ndim);
VecDoub y(npts);
...
RBF_multiquadric multiquadric(r0);
RBF_interp myfunc(pts,y,multiquadric,0);

followed by any number of interpolation calls,

VecDoub pt(ndim);
Doub val;
...
val = myfunc.interp(pt);

3.7.3 Shepard Interpolation
An interesting special case of normalized radial basis function interpolation

(equations 3.7.3 and 3.7.4) occurs if the function !.r/ goes to infinity as r ! 0,
and is finite (e.g., decreasing) for r > 0. In that case it is easy to see that the weights
wi are just equal to the respective function values yi , and the interpolation formula
is simply

y.x/ D
PN!1
iD0 yi!.jx ! xi j/
PN!1
iD0 !.jx ! xi j/

(3.7.9)

(with appropriate provision for the limiting case where x is equal to one of the xi ’s).
Note that no solution of linear equations is required. The one-time work is negligible,
while the work for each interpolation is O.N/, tolerable even for very large N .

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 144 — #166 ✐
✐

✐ ✐

144 Chapter 3. Interpolation and Extrapolation

Shepard proposed the simple power-law function

!.r/ D r!p (3.7.10)

with (typically) 1 < p . 3, as well as some more complicated functions with differ-
ent exponents in an inner and outer region (see [8]). You can see that what is going
on is basically interpolation by a nearness-weighted average, with nearby points con-
tributing more strongly than distant ones.

Shepard interpolation is rarely as accurate as the well-tuned application of one
of the other radial basis functions, above. On the other hand, it is simple, fast, and
often just the thing for quick and dirty applications. It, and variants, are thus widely
used.

An implementing object is

struct Shep_interp {interp rbf.h
Object for Shepard interpolation using n points in dim dimensions. Call constructor once, then
interp as many times as desired.

Int dim, n;
const MatDoub &pts;
const VecDoub &vals;
Doub pneg;

Shep_interp(MatDoub_I &ptss, VecDoub_I &valss, Doub p=2.)
: dim(ptss.ncols()), n(ptss.nrows()) , pts(ptss),
vals(valss), pneg(-p) {}
Constructor. The n " dim matrix ptss inputs the data points, the vector valss the function
values. Set p to the desired exponent. The default value is typical.

Doub interp(VecDoub_I &pt) {
Return the interpolated function value at a dim-dimensional point pt.

Doub r, w, sum=0., sumw=0.;
if (pt.size() != dim) throw("RBF_interp bad pt size");
for (Int i=0;i<n;i++) {

if ((r=rad(&pt[0],&pts[i][0])) == 0.) return vals[i];
sum += (w = pow(r,pneg));
sumw += w*vals[i];

}
return sumw/sum;

}

Doub rad(const Doub *p1, const Doub *p2) {
Euclidean distance.

Doub sum = 0.;
for (Int i=0;i<dim;i++) sum += SQR(p1[i]-p2[i]);
return sqrt(sum);

}
};

3.7.4 Interpolation by Kriging
Kriging is a technique named for South African mining engineer D.G. Krige. It

is basically a form of linear prediction ("13.6), also known in different communities
as Gauss-Markov estimation or Gaussian process regression.

Kriging can be either an interpolation method or a fitting method. The distinc-
tion between the two is whether the fitted/interpolated function goes exactly through
all the input data points (interpolation), or whether it allows measurement errors to
be specified and then “smooths” to get a statistically better predictor that does not

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 145 — #167 ✐
✐

✐ ✐

3.7 Interpolation on Scattered Data in Multidimensions 145

generally go through the data points (does not “honor the data”). In this section we
consider only the former case, that is, interpolation. We will return to the latter case
in !15.9.

At this point in the book, it is beyond our scope to derive the equations for
kriging. You can turn to !13.6 to get a flavor, and look to references [9,10,11] for
details. To use kriging, you must be able to estimate the mean square variation of
your function y.x/ as a function of offset distance r , a so-called variogram,

v.r/ ! 1
2

D
Œy.xC r/ " y.x/"2

E
(3.7.11)

where the average is over all x with fixed r . If this seems daunting, don’t worry.
For interpolation, even very crude variogram estimates work fine, and we will give
below a routine to estimate v.r/ from your input data points xi and yi D y.xi /,
i D 0; : : : ; N " 1, automatically. One usually takes v.r/ to be a function only of the
magnitude r D jrj and writes it as v.r/.

Let vij denote v.jxi " xj j/, where i and j are input points, and let v!j denote
v.jx! " xj j/, x! being a point at which we want an interpolated value y.x!/. Now
define two vectors of length N C 1,

Y D .y0; y1; : : : ; yN"1; 0/
V ! D .v!1; v!2; : : : ; v!;N"1; 1/

(3.7.12)

and an .N C 1/ # .N C 1/ symmetric matrix,

V D

0

BBBB@

v00 v01 : : : v0;N"1 1
v10 v11 : : : v1;N"1 1

: : : : : :
vN"1;0 vN"1;1 : : : vN"1;N"1 1
1 1 : : : 1 0

1

CCCCA
(3.7.13)

Then the kriging interpolation estimate yy! $ y.x!/ is given by

yy! D V ! % V"1 % Y (3.7.14)

and its variance is given by

Var.yy!/ D V ! % V"1 % V ! (3.7.15)

Notice that if we compute, once, the LU decomposition of V , and then backsub-
stitute, once, to get the vector V"1 % Y , then the individual interpolations cost only
O.N/: Compute the vector V ! and take a vector dot product. On the other hand,
every computation of a variance, equation (3.7.15), requires an O.N 2/ backsubsti-
tution.

As an aside (if you have looked ahead to !13.6) the purpose of the extra row and
column in V , and extra last components in V ! and Y , is to automatically calculate,
and correct for, an appropriately weighted average of the data, and thus to make
equation (3.7.14) an unbiased estimator.

Here is an implementation of equations (3.7.12) – (3.7.15). The constructor
does the one-time work, while the two overloaded interp methods calculate either
an interpolated value or else a value and a standard deviation (square root of the
variance). You should leave the optional argument err set to the default value of
NULL until you read !15.9.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 146 — #168 ✐
✐

✐ ✐

146 Chapter 3. Interpolation and Extrapolation

template<class T>krig.h
struct Krig {
Object for interpolation by kriging, using npt points in ndim dimensions. Call constructor once,
then interp as many times as desired.

const MatDoub &x;
const T &vgram;
Int ndim, npt;
Doub lastval, lasterr; Most recently computed value and (if com-

puted) error.VecDoub y,dstar,vstar,yvi;
MatDoub v;
LUdcmp *vi;

Krig(MatDoub_I &xx, VecDoub_I &yy, T &vargram, const Doub *err=NULL)
: x(xx),vgram(vargram),npt(xx.nrows()),ndim(xx.ncols()),dstar(npt+1),
vstar(npt+1),v(npt+1,npt+1),y(npt+1),yvi(npt+1) {
Constructor. The npt ! ndim matrix xx inputs the data points, the vector yy the function
values. vargram is the variogram function or functor. The argument err is not used for
interpolation; see !15.9.

Int i,j;
for (i=0;i<npt;i++) { Fill Y and V .

y[i] = yy[i];
for (j=i;j<npt;j++) {

v[i][j] = v[j][i] = vgram(rdist(&x[i][0],&x[j][0]));
}
v[i][npt] = v[npt][i] = 1.;

}
v[npt][npt] = y[npt] = 0.;
if (err) for (i=0;i<npt;i++) v[i][i] -= SQR(err[i]); !15.9.
vi = new LUdcmp(v);
vi->solve(y,yvi);

}
~Krig() { delete vi; }

Doub interp(VecDoub_I &xstar) {
Return an interpolated value at the point xstar.

Int i;
for (i=0;i<npt;i++) vstar[i] = vgram(rdist(&xstar[0],&x[i][0]));
vstar[npt] = 1.;
lastval = 0.;
for (i=0;i<=npt;i++) lastval += yvi[i]*vstar[i];
return lastval;

}

Doub interp(VecDoub_I &xstar, Doub &esterr) {
Return an interpolated value at the point xstar, and return its estimated error as esterr.

lastval = interp(xstar);
vi->solve(vstar,dstar);
lasterr = 0;
for (Int i=0;i<=npt;i++) lasterr += dstar[i]*vstar[i];
esterr = lasterr = sqrt(MAX(0.,lasterr));
return lastval;

}

Doub rdist(const Doub *x1, const Doub *x2) {
Utility used internally. Cartesian distance between two points.

Doub d=0.;
for (Int i=0;i<ndim;i++) d += SQR(x1[i]-x2[i]);
return sqrt(d);

}
};

The constructor argument vgram, the variogram function, can be either a func-

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 147 — #169 ✐
✐

✐ ✐

3.7 Interpolation on Scattered Data in Multidimensions 147

tion or functor (!1.3.3). For interpolation, you can use a Powvargram object that fits
a simple model

v.r/ D ˛rˇ (3.7.16)

where ˇ is considered fixed and ˛ is fitted by unweighted least squares over all pairs
of data points i and j . We’ll get more sophisticated about variograms in !15.9;
but for interpolation, excellent results can be obtained with this simple choice. The
value of ˇ should be in the range 1 ! ˇ < 2. A good general choice is 1:5, but
for functions with a strong linear trend, you may want to experiment with values as
large as 1:99. (The value 2 gives a degenerate matrix and meaningless results.) The
optional argument nug will be explained in !15.9.

struct Powvargram { krig.h
Functor for variogram v.r/ D ˛rˇ , where ˇ is specified, ˛ is fitted from the data.

Doub alph, bet, nugsq;

Powvargram(MatDoub_I &x, VecDoub_I &y, const Doub beta=1.5, const Doub nug=0.)
: bet(beta), nugsq(nug*nug) {
Constructor. The npt ! ndim matrix x inputs the data points, the vector y the function
values, beta the value of ˇ . For interpolation, the default value of beta is usually adequate.
For the (rare) use of nug see !15.9.

Int i,j,k,npt=x.nrows(),ndim=x.ncols();
Doub rb,num=0.,denom=0.;
for (i=0;i<npt;i++) for (j=i+1;j<npt;j++) {

rb = 0.;
for (k=0;k<ndim;k++) rb += SQR(x[i][k]-x[j][k]);
rb = pow(rb,0.5*beta);
num += rb*(0.5*SQR(y[i]-y[j]) - nugsq);
denom += SQR(rb);

}
alph = num/denom;

}

Doub operator() (const Doub r) const {return nugsq+alph*pow(r,bet);}
};

Sample code for interpolating on a set of data points is

MatDoub x(npts,ndim);
VecDoub y(npts), xstar(ndim);
...
Powvargram vgram(x,y);
Krig<Powvargram> krig(x,y,vgram);

followed by any number of interpolations of the form

ystar = krig.interp(xstar);

Be aware that while the interpolated values are quite insensitive to the vari-
ogram model, the estimated errors are rather sensitive to it. You should thus consider
the error estimates as being order of magnitude only. Since they are also relatively
expensive to compute, their value in this application is not great. They will be much
more useful in !15.9, when our model includes measurement errors.

3.7.5 Curve Interpolation in Multidimensions
A different kind of interpolation, worth a brief mention here, is when you have

an ordered set of N tabulated points in n dimensions that lie on a one-dimensional
curve, x0; : : :xN"1, and you want to interpolate other values along the curve. Two

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 148 — #170 ✐
✐

✐ ✐

148 Chapter 3. Interpolation and Extrapolation

cases worth distinguishing are: (i) The curve is an open curve, so that x0 and xN!1
represent endpoints. (ii) The curve is a closed curve, so that there is an implied curve
segment connecting xN!1 back to x0.

A straightforward solution, using methods already at hand, is first to approx-
imate distance along the curve by the sum of chord lengths between the tabulated
points, and then to construct spline interpolations for each of the coordinates, 0; : : : ;
n ! 1, as a function of that parameter. Since the derivative of any single coordinate
with respect to arc length can be no greater than 1, it is guaranteed that the spline
interpolations will be well-behaved.

Probably 90% of applications require nothing more complicated than the above.
If you are in the unhappy 10%, then you will need to learn about Bézier curves, B-
splines, and interpolating splines more generally [12,13,14]. For the happy majority,
an implementation is

struct Curve_interp {interp curve.h
Object for interpolating a curve specified by n points in dim dimensions.

Int dim, n, in;
Bool cls; Set if a closed curve.
MatDoub pts;
VecDoub s;
VecDoub ans;
NRvector<Spline_interp*> srp;

Curve_interp(MatDoub &ptsin, Bool close=0)
: n(ptsin.nrows()), dim(ptsin.ncols()), in(close ? 2*n : n),
cls(close), pts(dim,in), s(in), ans(dim), srp(dim) {
Constructor. The n " dim matrix ptsin inputs the data points. Input close as 0 for
an open curve, 1 for a closed curve. (For a closed curve, the last data point should not
duplicate the first — the algorithm will connect them.)

Int i,ii,im,j,ofs;
Doub ss,soff,db,de;
ofs = close ? n/2 : 0; The trick for closed curves is to duplicate half a

period at the beginning and end, and then
use the middle half of the resulting spline.

s[0] = 0.;
for (i=0;i<in;i++) {

ii = (i-ofs+n) % n;
im = (ii-1+n) % n;
for (j=0;j<dim;j++) pts[j][i] = ptsin[ii][j]; Store transpose.
if (i>0) { Accumulate arc length.

s[i] = s[i-1] + rad(&ptsin[ii][0],&ptsin[im][0]);
if (s[i] == s[i-1]) throw("error in Curve_interp");
Consecutive points may not be identical. For a closed curve, the last data
point should not duplicate the first.

}
}
ss = close ? s[ofs+n]-s[ofs] : s[n-1]-s[0]; Rescale parameter so that the

interval [0,1] is the whole curve (or one period).soff = s[ofs];
for (i=0;i<in;i++) s[i] = (s[i]-soff)/ss;
for (j=0;j<dim;j++) { Construct the splines using endpoint derivatives.

db = in < 4 ? 1.e99 : fprime(&s[0],&pts[j][0],1);
de = in < 4 ? 1.e99 : fprime(&s[in-1],&pts[j][in-1],-1);
srp[j] = new Spline_interp(s,&pts[j][0],db,de);

}
}
~Curve_interp() {for (Int j=0;j<dim;j++) delete srp[j];}

VecDoub &interp(Doub t) {
Interpolate a point on the stored curve. The point is parameterized by t, in the range [0,1].
For open curves, values of t outside this range will return extrapolations (dangerous!). For
closed curves, t is periodic with period 1.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 149 — #171 ✐
✐

✐ ✐

3.7 Interpolation on Scattered Data in Multidimensions 149

if (cls) t = t - floor(t);
for (Int j=0;j<dim;j++) ans[j] = (*srp[j]).interp(t);
return ans;

}

Doub fprime(Doub *x, Doub *y, Int pm) {
Utility for estimating the derivatives at the endpoints. x and y point to the abscissa and
ordinate of the endpoint. If pm is C1, points to the right will be used (left endpoint); if it
is !1, points to the left will be used (right endpoint). See text, below.

Doub s1 = x[0]-x[pm*1], s2 = x[0]-x[pm*2], s3 = x[0]-x[pm*3],
s12 = s1-s2, s13 = s1-s3, s23 = s2-s3;

return -(s1*s2/(s13*s23*s3))*y[pm*3]+(s1*s3/(s12*s2*s23))*y[pm*2]
-(s2*s3/(s1*s12*s13))*y[pm*1]+(1./s1+1./s2+1./s3)*y[0];

}

Doub rad(const Doub *p1, const Doub *p2) {
Euclidean distance.

Doub sum = 0.;
for (Int i=0;i<dim;i++) sum += SQR(p1[i]-p2[i]);
return sqrt(sum);

}

};

The utility routine fprime estimates the derivative of a function at a tabulated
abscissa x0 using four consecutive tabulated abscissa-ordinate pairs, .x0; y0/; : : : ;
.x3; y3/. The formula for this, readily derived by power-series expansion, is

y00 D !C0y0 C C1y1 ! C2y2 C C3y3 (3.7.17)

where

C0 D
1

s1
C 1

s2
C 1

s3

C1 D
s2s3

s1.s2 ! s1/.s3 ! s1/
C2 D

s1s3

.s2 ! s1/s2.s3 ! s2/
C3 D

s1s2

.s3 ! s1/.s3 ! s2/s3

(3.7.18)

with
s1 " x1 ! x0
s2 " x2 ! x0
s3 " x3 ! x0

(3.7.19)

CITED REFERENCES AND FURTHER READING:

Buhmann, M.D. 2003, Radial Basis Functions: Theory and Implementations (Cambridge, UK:
Cambridge University Press).[1]

Powell, M.J.D. 1992, “The Theory of Radial Basis Function Approximation” in Advances in Nu-
merical Analysis II: Wavelets, Subdivision Algorithms and Radial Functions, ed. W. A. Light
(Oxford: Oxford University Press), pp. 105–210.[2]

Wikipedia. 2007+, “Radial Basis Functions,” at http://en.wikipedia.org/.[3]

Beatson, R.K. and Greengard, L. 1997, “A Short Course on Fast Multipole Methods”, in Wavelets,
Multilevel Methods and Elliptic PDEs, eds. M. Ainsworth, J. Levesley, W. Light, and M. Mar-
letta (Oxford: Oxford University Press), pp. 1–37.[4]

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 150 — #172 ✐
✐

✐ ✐

150 Chapter 3. Interpolation and Extrapolation

Beatson, R.K. and Newsam, G.N. 1998, “Fast Evaluation of Radial Basis Functions: Moment-
Based Methods” in SIAM Journal on Scientific Computing, vol. 19, pp. 1428-1449.[5]

Wendland, H. 2005, Scattered Data Approximation (Cambridge, UK: Cambridge University
Press).[6]

Franke, R. 1982, “Scattered Data Interpolation: Tests of Some Methods," Mathematics of Com-
putation, vol. 38, pp. 181–200.[7]

Shepard, D. 1968, “A Two-dimensional Interpolation Function for Irregularly-spaced Data,” in
Proceedings of the 1968 23rd ACM National Conference (New York: ACM Press), pp. 517–
524.[8]

Cressie, N. 1991, Statistics for Spatial Data (New York: Wiley).[9]

Wackernagel, H. 1998, Multivariate Geostatistics, 2nd ed. (Berlin: Springer).[10]

Rybicki, G.B., and Press, W.H. 1992, “Interpolation, Realization, and Reconstruction of Noisy,
Irregularly Sampled Data,” Astrophysical Journal, vol. 398, pp. 169–176.[11]

Isaaks, E.H., and Srivastava, R.M. 1989, Applied Geostatistics (New York: Oxford University
Press).

Deutsch, C.V., and Journel, A.G. 1992, GSLIB: Geostatistical Software Library and User’s Guide
(New York: Oxford University Press).

Knott, G.D. 1999, Interpolating Cubic Splines (Boston: Birkhäuser).[12]

De Boor, C. 2001, A Practical Guide to Splines (Berlin: Springer).[13]

Prautzsch, H., Boehm, W., and Paluszny, M. 2002, Bézier and B-Spline Techniques (Berlin:
Springer).[14]

3.8 Laplace Interpolation
In this section we look at a missing data or gridding problem, namely, how

to restore missing or unmeasured values on a regular grid. Evidently some kind of
interpolation from the not-missing values is required, but how shall we do this in a
principled way?

One good method, already in use at the dawn of the computer age [1,2], is
Laplace interpolation, sometimes called Laplace/Poisson interpolation. The gen-
eral idea is to find an interpolating function y that satisfies Laplace’s equation in n
dimensions,

r2y D 0 (3.8.1)

wherever there is no data, and which satisfies

y.xi / D yi (3.8.2)

at all measured data points. Generically, such a function does exist. The reason
for choosing Laplace’s equation (among all possible partial differential equations,
say) is that the solution to Laplace’s equation selects, in some sense, the smoothest
possible interpolant. In particular, its solution minimizes the integrated square of the
gradient, Z

!

jryj2 d! (3.8.3)

where ! denotes the n-dimensional domain of interest. This is a very general idea,
and it can be applied to irregular meshes as well as to regular grids. Here, however,
we consider only the latter.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 151 — #173 ✐
✐

✐ ✐

3.8 Laplace Interpolation 151

For purposes of illustration (and because it is the most useful example) we fur-
ther specialize to the case of two dimensions, and to the case of a Cartesian grid
whose x1 and x2 values are evenly spaced — like a checkerboard.

In this geometry, the finite difference approximation to Laplace’s equation has
a particularly simple form, one that echos the mean value theorem for continuous
solutions of the Laplace equation: The value of the solution at any free gridpoint
(i.e., not a point with a measured value) equals the average of its four Cartesian
neighbors. (See !20.0.) Indeed, this already sounds a lot like interpolation.

If y0 denotes the value at a free point, while yu, yd , yl , and yr denote the values
at its up, down, left, and right neighbors, respectively, then the equation satisfied is

y0 ! 1
4yu ! 1

4yd ! 1
4yl ! 1

4yr D 0 (3.8.4)

For gridpoints with measured values, on the other hand, a different (simple)
equation is satisfied,

y0 D y0.measured/ (3.8.5)

Note that these nonzero right-hand sides are what make an inhomogeneous, and
therefore generally solvable, set of linear equations.

We are not quite done, since we must provide special forms for the top, bot-
tom, left, and right boundaries, and for the four corners. Homogeneous choices that
embody “natural” boundary conditions (with no preferred function values) are

y0 ! 1
2yu ! 1

2yd D 0 (left and right boundaries)

y0 ! 1
2yl ! 1

2yr D 0 (top and bottom boundaries)

y0 ! 1
2yr ! 1

2yd D 0 (top-left corner)

y0 ! 1
2yl ! 1

2yd D 0 (top-right corner)

y0 ! 1
2yr ! 1

2yu D 0 (bottom-left corner)

y0 ! 1
2yl ! 1

2yu D 0 (bottom-right corner)

(3.8.6)

Since every gridpoint corresponds to exactly one of the equations in (3.8.4),
(3.8.5), or (3.8.4), we have exactly as many equations as there are unknowns. If the
grid is M by N , then there are MN of each. This can be quite a large number; but
the equations are evidently very sparse. We solve them by defining a derived class
from !2.7’s Linbcg base class. You can readily identify all the cases of equations
(3.8.4) – (3.8.6) in the code for atimes, below.

struct Laplace_interp : Linbcg { interp laplace.h
Object for interpolating missing data in a matrix by solving Laplace’s equation. Call constructor
once, then solve one or more times (see text).

MatDoub &mat;
Int ii,jj;
Int nn,iter;
VecDoub b,y,mask;

Laplace_interp(MatDoub_IO &matrix) : mat(matrix), ii(mat.nrows()),
jj(mat.ncols()), nn(ii*jj), iter(0), b(nn), y(nn), mask(nn) {
Constructor. Values greater than 1.e99 in the input matrix mat are deemed to be missing
data. The matrix is not altered until solve is called.

Int i,j,k;
Doub vl = 0.;

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 152 — #174 ✐
✐

✐ ✐

152 Chapter 3. Interpolation and Extrapolation

for (k=0;k<nn;k++) { Fill the r.h.s. vector, the initial guess,
and a mask of the missing data.i = k/jj;

j = k - i*jj;
if (mat[i][j] < 1.e99) {

b[k] = y[k] = vl = mat[i][j];
mask[k] = 1;

} else {
b[k] = 0.;
y[k] = vl;
mask[k] = 0;

}
}

}

void asolve(VecDoub_I &b, VecDoub_O &x, const Int itrnsp);
void atimes(VecDoub_I &x, VecDoub_O &r, const Int itrnsp);
See definitions below. These are the real algorithmic content.

Doub solve(Doub tol=1.e-6, Int itmax=-1) {
Invoke Linbcg::solve with appropriate arguments. The default argument values will usu-
ally work, in which case this routine need be called only once. The original matrix mat is
refilled with the interpolated solution.

Int i,j,k;
Doub err;
if (itmax <= 0) itmax = 2*MAX(ii,jj);
Linbcg::solve(b,y,1,tol,itmax,iter,err);
for (k=0,i=0;i<ii;i++) for (j=0;j<jj;j++) mat[i][j] = y[k++];
return err;

}
};

void Laplace_interp::asolve(VecDoub_I &b, VecDoub_O &x, const Int itrnsp) {
Diagonal preconditioner. (Diagonal elements all unity.)

Int i,n=b.size();
for (i=0;i<n;i++) x[i] = b[i];

}

void Laplace_interp::atimes(VecDoub_I &x, VecDoub_O &r, const Int itrnsp) {
Sparse matrix, and matrix transpose, multiply. This routine embodies eqs. (3.8.4), (3.8.5), and
(3.8.6).

Int i,j,k,n=r.size(),jjt,it;
Doub del;
for (k=0;k<n;k++) r[k] = 0.;
for (k=0;k<n;k++) {

i = k/jj;
j = k - i*jj;
if (mask[k]) { Measured point, eq. (3.8.5).

r[k] += x[k];
} else if (i>0 && i<ii-1 && j>0 && j<jj-1) { Interior point, eq. (3.8.4).

if (itrnsp) {
r[k] += x[k];
del = -0.25*x[k];
r[k-1] += del;
r[k+1] += del;
r[k-jj] += del;
r[k+jj] += del;

} else {
r[k] = x[k] - 0.25*(x[k-1]+x[k+1]+x[k+jj]+x[k-jj]);

}
} else if (i>0 && i<ii-1) { Left or right edge, eq. (3.8.6).

if (itrnsp) {
r[k] += x[k];
del = -0.5*x[k];
r[k-jj] += del;

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 153 — #175 ✐
✐

✐ ✐

3.8 Laplace Interpolation 153

r[k+jj] += del;
} else {

r[k] = x[k] - 0.5*(x[k+jj]+x[k-jj]);
}

} else if (j>0 && j<jj-1) { Top or bottom edge, eq. (3.8.6).
if (itrnsp) {

r[k] += x[k];
del = -0.5*x[k];
r[k-1] += del;
r[k+1] += del;

} else {
r[k] = x[k] - 0.5*(x[k+1]+x[k-1]);

}
} else { Corners, eq. (3.8.6).

jjt = i==0 ? jj : -jj;
it = j==0 ? 1 : -1;
if (itrnsp) {

r[k] += x[k];
del = -0.5*x[k];
r[k+jjt] += del;
r[k+it] += del;

} else {
r[k] = x[k] - 0.5*(x[k+jjt]+x[k+it]);

}
}

}
}

Usage is quite simple. Just fill a matrix with function values where they are
known, and with 1.e99 where they are not; send the matrix to the constructor; and
call the solve routine. The missing values will be interpolated. The default argu-
ments should serve for most cases.

Int m=...,n=...;
MatDoub mat(m,n);
...
Laplace_interp mylaplace(mat);
mylaplace.solve();

Quite decent results are obtained for smooth functions on 300 ! 300 matrices in
which a random 10% of gridpoints have known function values, with 90% interpo-
lated. However, since compute time scales asMN max .M;N / (that is, as the cube),
this is not a method to use for much larger matrices, unless you break them up into
overlapping tiles. If you experience convergence difficulties, then you should call
solve, with appropriate nondefault arguments, several times in succession, and look
at the returned error estimate after each call returns.

3.8.1 Minimum Curvature Methods
Laplace interpolation has a tendency to yield cone-like cusps around any small

islands of known data points that are surrounded by a sea of unknowns. The reason
is that, in two dimensions, the solution of Laplace’s equation near a point source is
logarithmically singular. When the known data is spread fairly evenly (if randomly)
across the grid, this is not generally a problem. Minimum curvature methods deal
with the problem at a more fundamental level by being based on the biharmonic
equation

r.ry/ D 0 (3.8.7)

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 154 — #176 ✐
✐

✐ ✐

154 Chapter 3. Interpolation and Extrapolation

instead of Laplace’s equation. Solutions of the biharmonic equation minimize the
integrated square of the curvature,

Z

!

jr2yj2 d! (3.8.8)

Minimum curvature methods are widely used in the earth-science community [3,4].

The references give a variety of other methods that can be used for missing data
interpolation and gridding.

CITED REFERENCES AND FURTHER READING:

Noma, A.A. and Misulia, M.G. 1959, “Programming Topographic Maps for Automatic Terrain
Model Construction,” Surveying and Mapping, vol. 19, pp. 355–366.[1]

Crain, I.K. 1970, “Computer Interpolation and Contouring of Two-dimensional Data: a Review,”
Geoexploration, vol. 8, pp. 71–86.[2]

Burrough, P.A. 1998, Principles of Geographical Information Systems, 2nd ed. (Oxford, UK:
Clarendon Press)

Watson, D.F. 1982, Contouring: A Guide to the Analysis and Display of Spatial Data (Oxford,
UK: Pergamon).

Briggs, I.C. 1974, “Machine Contouring Using Minimum Curvature,” Geophysics, vol. 39, pp. 39–
48.[3]

Smith, W.H.F. and Wessel, P. 1990, “Gridding With Continuous Curvature Splines in Tension,”
Geophysics, vol. 55, pp. 293–305.[4]

