
✐
✐

“nr3” — 2007/5/1 — 20:53 — page 155 — #177 ✐
✐

✐ ✐

Integration of Functions CHAPTER 4

4.0 Introduction

Numerical integration, which is also called quadrature, has a history extending
back to the invention of calculus and before. The fact that integrals of elementary
functions could not, in general, be computed analytically, while derivatives could be,
served to give the field a certain panache, and to set it a cut above the arithmetic
drudgery of numerical analysis during the whole of the 18th and 19th centuries.

With the invention of automatic computing, quadrature became just one numer-
ical task among many, and not a very interesting one at that. Automatic computing,
even the most primitive sort involving desk calculators and rooms full of “comput-
ers” (that were, until the 1950s, people rather than machines), opened to feasibility
the much richer field of numerical integration of differential equations. Quadrature
is merely the simplest special case: The evaluation of the integral

I D
Z b

a

f .x/dx (4.0.1)

is precisely equivalent to solving for the value I ! y.b/ the differential equation

dy

dx
D f .x/ (4.0.2)

with the boundary condition
y.a/ D 0 (4.0.3)

Chapter 17 of this book deals with the numerical integration of differential equa-
tions. In that chapter, much emphasis is given to the concept of “variable” or “adap-
tive” choices of stepsize. We will not, therefore, develop that material here. If the
function that you propose to integrate is sharply concentrated in one or more peaks,
or if its shape is not readily characterized by a single length scale, then it is likely
that you should cast the problem in the form of (4.0.2) – (4.0.3) and use the methods
of Chapter 17. (But take a look at !4.7 first.)

The quadrature methods in this chapter are based, in one way or another, on the
obvious device of adding up the value of the integrand at a sequence of abscissas

155

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 156 — #178 ✐
✐

✐ ✐

156 Chapter 4. Integration of Functions

within the range of integration. The game is to obtain the integral as accurately as
possible with the smallest number of function evaluations of the integrand. Just as
in the case of interpolation (Chapter 3), one has the freedom to choose methods of
various orders, with higher order sometimes, but not always, giving higher accuracy.
Romberg integration, which is discussed in !4.3, is a general formalism for mak-
ing use of integration methods of a variety of different orders, and we recommend
it highly.

Apart from the methods of this chapter and of Chapter 17, there are yet other
methods for obtaining integrals. One important class is based on function approxima-
tion. We discuss explicitly the integration of functions by Chebyshev approximation
(Clenshaw-Curtis quadrature) in !5.9. Although not explicitly discussed here, you
ought to be able to figure out how to do cubic spline quadrature using the output
of the routine spline in !3.3. (Hint: Integrate equation 3.3.3 over x analytically.
See [1].)

Some integrals related to Fourier transforms can be calculated using the fast
Fourier transform (FFT) algorithm. This is discussed in !13.9. A related problem is
the evaluation of integrals with long oscillatory tails. This is discussed at the end of
!5.3.

Multidimensional integrals are a whole ’nother multidimensional bag of worms.
Section 4.8 is an introductory discussion in this chapter; the important technique of
Monte Carlo integration is treated in Chapter 7.

CITED REFERENCES AND FURTHER READING:

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Chapter 2.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods; reprinted 1994 (New York:
Dover), Chapter 7.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 4.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
Chapter 3.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), !7.4.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice-Hall), Chapter 5.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), !5.2, p. 89.[1]

Davis, P., and Rabinowitz, P. 1984, Methods of Numerical Integration, 2nd ed. (Orlando, FL:
Academic Press).

4.1 Classical Formulas for Equally Spaced
Abscissas

Where would any book on numerical analysis be without Mr. Simpson and his
“rule”? The classical formulas for integrating a function whose value is known at

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 157 — #179 ✐
✐

✐ ✐

4.1 Classical Formulas for Equally Spaced Abscissas 157

x0 xN− 1 xN

open formulas use these points

closed formulas use these points

x1 x2

h

Figure 4.1.1. Quadrature formulas with equally spaced abscissas compute the integral of a function
between x0 and xN . Closed formulas evaluate the function on the boundary points, while open formulas
refrain from doing so (useful if the evaluation algorithm breaks down on the boundary points).

equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modern numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as the time
of Newton, if not farther. Alas, times do change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended
midpoint rule,” equation 4.1.19; see !4.2), the classical formulas are almost entirely
useless. They are museum pieces, but beautiful ones; we now enter the museum.
(You can skip to !4.2 if you are not touristically inclined.)

Some notation: We have a sequence of abscissas, denoted x0; x1; : : : ; xN!1; xN ,
that are spaced apart by a constant step h,

xi D x0 C ih i D 0; 1; : : : ; N (4.1.1)

A function f .x/ has known values at the xi ’s,

f .xi / ! fi (4.1.2)

We want to integrate the function f .x/ between a lower limit a and an upper limit b,
where a and b are each equal to one or the other of the xi ’s. An integration formula
that uses the value of the function at the endpoints, f .a/ or f .b/, is called a closed
formula. Occasionally, we want to integrate a function whose value at one or both
endpoints is difficult to compute (e.g., the computation of f goes to a limit of zero
over zero there, or worse yet has an integrable singularity there). In this case we
want an open formula, which estimates the integral using only xi ’s strictly between
a and b (see Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over a small number of intervals. As that number increases, we can find
rules that are exact for polynomials of increasingly high order. (Keep in mind that
higher order does not always imply higher accuracy in real cases.) A sequence of
such closed formulas is now given.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 158 — #180 ✐
✐

✐ ✐

158 Chapter 4. Integration of Functions

4.1.1 Closed Newton-Cotes Formulas
Trapezoidal rule:

Z x1

x0

f .x/dx D h
!
1

2
f0 C

1

2
f1

"
CO.h3f 00/ (4.1.3)

Here the error term O. / signifies that the true answer differs from the estimate by
an amount that is the product of some numerical coefficient times h3 times the value
of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evaluate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write only O. /, instead of the coefficient.

Equation (4.1.3) is a two-point formula (x0 and x1). It is exact for polynomials
up to and including degree 1, i.e., f .x/ D x. One anticipates that there is a three-
point formula exact up to polynomials of degree 2. This is true; moreover, by a
cancellation of coefficients due to left-right symmetry of the formula, the three-point
formula is exact for polynomials up to and including degree 3, i.e., f .x/ D x3.

Simpson’s rule:
Z x2

x0

f .x/dx D h
!
1

3
f0 C

4

3
f1 C

1

3
f2

"
CO.h5f .4// (4.1.4)

Here f .4/ means the fourth derivative of the function f evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an interval of
size 2h, so the coefficients add up to 2.

There is no lucky cancellation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

Simpson’s 38 rule:
Z x3

x0

f .x/dx D h
!
3

8
f0 C

9

8
f1 C

9

8
f2 C

3

8
f3

"
CO.h5f .4// (4.1.5)

The five-point formula again benefits from a cancellation:

Bode’s rule:
Z x4

x0

f .x/dx D h
!
14

45
f0 C

64

45
f1 C

24

45
f2 C

64

45
f3 C

14

45
f4

"
CO.h7f .6//

(4.1.6)
This is exact for polynomials up to and including degree 5.

At this point the formulas stop being named after famous personages, so we
will not go any further. Consult [1] for additional formulas in the sequence.

4.1.2 Extrapolative Formulas for a Single Interval
We are going to depart from historical practice for a moment. Many texts would

give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.” Here is

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 159 — #181 ✐
✐

✐ ✐

4.1 Classical Formulas for Equally Spaced Abscissas 159

an example:
Z x5

x0

f .x/dx D h
!
55

24
f1 C

5

24
f2 C

5

24
f3 C

55

24
f4

"
CO.h5f .4//

Notice that the integral from a D x0 to b D x5 is estimated, using only the interior
points x1; x2; x3; x4. In our opinion, formulas of this type are not useful for the
reasons that (i) they cannot usefully be strung together to get “extended” rules, as we
are about to do with the closed formulas, and (ii) for all other possible uses they are
dominated by the Gaussian integration formulas, which we will introduce in !4.6.

Instead of the Newton-Cotes open formulas, let us set out the formulas for esti-
mating the integral in the single interval from x0 to x1, using values of the function
f at x1; x2; : : : . These will be useful building blocks later for the “extended” open
formulas.
Z x1

x0

f .x/dx D hŒf1" CO.h2f 0/ (4.1.7)

Z x1

x0

f .x/dx D h
!
3

2
f1 !

1

2
f2

"
CO.h3f 00/ (4.1.8)

Z x1

x0

f .x/dx D h
!
23

12
f1 !

16

12
f2 C

5

12
f3

"
CO.h4f .3// (4.1.9)

Z x1

x0

f .x/dx D h
!
55

24
f1 !

59

24
f2 C

37

24
f3 !

9

24
f4

"
CO.h5f .4// (4.1.10)

Perhaps a word here would be in order about how formulas like the above can
be derived. There are elegant ways, but the most straightforward is to write down the
basic form of the formula, replacing the numerical coefficients with unknowns, say
p; q; r; s. Without loss of generality take x0 D 0 and x1 D 1, so h D 1. Substitute
in turn for f .x/ (and for f1; f2; f3; f4) the functions f .x/ D 1, f .x/ D x, f .x/ D
x2, and f .x/ D x3. Doing the integral in each case reduces the left-hand side to
a number and the right-hand side to a linear equation for the unknowns p; q; r; s.
Solving the four equations produced in this way gives the coefficients.

4.1.3 Extended Formulas (Closed)
If we use equation (4.1.3) N ! 1 times to do the integration in the intervals

.x0; x1/; .x1; x2/; : : : ; .xN!2; xN!1/ and then add the results, we obtain an “ex-
tended” or “composite” formula for the integral from x0 to xN!1.

Extended trapezoidal rule:
Z xN!1

x0

f .x/dx D h
!
1

2
f0 C f1 C f2 C

" " "C fN!2 C
1

2
fN!1

"
CO

#
.b ! a/3f 00

N 2

$ (4.1.11)

Here we have written the error estimate in terms of the interval b!a and the number
of pointsN instead of in terms of h. This is clearer, since one is usually holding a and

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 160 — #182 ✐
✐

✐ ✐

160 Chapter 4. Integration of Functions

b fixed and wanting to know, e.g., how much the error will be decreased by taking
twice as many steps (in this case, it is by a factor of 4). In subsequent equations we
will show only the scaling of the error term with the number of steps.

For reasons that will not become clear until !4.2, equation (4.1.11) is in fact the
most important equation in this section; it is the basis for most practical quadrature
schemes.

The extended formula of order 1=N 3 is
Z xN!1

x0

f .x/dx D h
!
5

12
f0 C

13

12
f1 C f2 C f3 C

! ! !C fN!3 C
13

12
fN!2 C

5

12
fN!1

"
CO

#
1

N 3

$

(4.1.12)
(We will see in a moment where this comes from.)

If we apply equation (4.1.4) to successive, nonoverlapping pairs of intervals,
we get the extended Simpson’s rule:
Z xN!1

x0

f .x/dx D h
!
1

3
f0 C

4

3
f1 C

2

3
f2 C

4

3
f3 C

! ! !C 2

3
fN!3 C

4

3
fN!2 C

1

3
fN!1

"
CO

#
1

N 4

$ (4.1.13)

Notice that the 2/3, 4/3 alternation continues throughout the interior of the evalu-
ation. Many people believe that the wobbling alternation somehow contains deep
information about the integral of their function that is not apparent to mortal eyes.
In fact, the alternation is an artifact of using the building block (4.1.4). Another
extended formula with the same order as Simpson’s rule is

Z xN!1

x0

f .x/dx D h
!
3

8
f0 C

7

6
f1 C

23

24
f2 C f3 C f4 C

! ! !C fN!5 C fN!4 C
23

24
fN!3 C

7

6
fN!2 C

3

8
fN!1

"

CO
#
1

N 4

$
(4.1.14)

This equation is constructed by fitting cubic polynomials through successive groups
of four points; we defer details to !19.3, where a similar technique is used in the
solution of integral equations. We can, however, tell you where equation (4.1.12)
came from. It is Simpson’s extended rule, averaged with a modified version of itself
in which the first and last steps are done with the trapezoidal rule (4.1.3). The trape-
zoidal step is two orders lower than Simpson’s rule; however, its contribution to the
integral goes down as an additional power of N (since it is used only twice, not N
times). This makes the resulting formula of degree one less than Simpson.

4.1.4 Extended Formulas (Open and Semi-Open)
We can construct open and semi-open extended formulas by adding the closed

formulas (4.1.11) – (4.1.14), evaluated for the second and subsequent steps, to the

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 161 — #183 ✐
✐

✐ ✐

4.1 Classical Formulas for Equally Spaced Abscissas 161

extrapolative open formulas for the first step, (4.1.7) – (4.1.10). As discussed imme-
diately above, it is consistent to use an end step that is of one order lower than the
(repeated) interior step. The resulting formulas for an interval open at both ends are
as follows.

Equations (4.1.7) and (4.1.11) give

Z xN!1

x0

f .x/dx D h
!
3

2
f1 C f2 C f3 C ! ! !C fN!3 C

3

2
fN!2

"
CO

#
1

N 2

$

(4.1.15)
Equations (4.1.8) and (4.1.12) give

Z xN!1

x0

f .x/dx D h
!
23

12
f1 C

7

12
f2 C f3 C f4 C

! ! !C fN!4 C
7

12
fN!3 C

23

12
fN!2

"
CO

#
1

N 3

$

(4.1.16)
Equations (4.1.9) and (4.1.13) give

Z xN!1

x0

f .x/dx D h
!
27

12
f1 C 0C

13

12
f3 C

4

3
f4 C

! ! !C 4

3
fN!5 C

13

12
fN!4 C 0C

27

12
fN!2

"
CO

#
1

N 4

$

(4.1.17)
The interior points alternate 4/3 and 2/3. If we want to avoid this alternation,

we can combine equations (4.1.9) and (4.1.14), giving

Z xN!1

x0

f .x/dx D h
!
55

24
f1 "

1

6
f2 C

11

8
f3 C f4 C f5 C f6 C

! ! !C fN!6 C fN!5 C
11

8
fN!4 "

1

6
fN!3 C

55

24
fN!2

"

CO
#
1

N 4

$
(4.1.18)

We should mention in passing another extended open formula, for use where
the limits of integration are located halfway between tabulated abscissas. This one is
known as the extended midpoint rule and is accurate to the same order as (4.1.15):

Z xN!1

x0

f .x/dx D hŒf1=2 C f3=2 C f5=2 C ! ! !C fN!5=2 C fN!3=2! CO
#
1

N 2

$

(4.1.19)
There are also formulas of higher order for this situation, but we will refrain from
giving them.

The semi-open formulas are just the obvious combinations of equations (4.1.11)
– (4.1.14) with (4.1.15) – (4.1.18), respectively. At the closed end of the integration,
use the weights from the former equations; at the open end, use the weights from

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 162 — #184 ✐
✐

✐ ✐

162 Chapter 4. Integration of Functions

N = 1

2

3

4

(total after N = 4)

Figure 4.2.1. Sequential calls to the routine Trapzd incorporate the information from previous calls and
evaluate the integrand only at those new points necessary to refine the grid. The bottom line shows the
totality of function evaluations after the fourth call. The routine qsimp, by weighting the intermediate
results, transforms the trapezoid rule into Simpson’s rule with essentially no additional overhead.

the latter equations. One example should give the idea, the formula with error term
decreasing as 1=N 3, which is closed on the right and open on the left:

Z xN!1

x0

f .x/dx D h
!
23

12
f1 C

7

12
f2 C f3 C f4 C

! ! !C fN!3 C
13

12
fN!2 C

5

12
fN!1

"
CO

#
1

N 3

$

(4.1.20)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, !25.4.[1]

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods; reprinted 1994 (New York:
Dover), !7.1.

4.2 Elementary Algorithms
Our starting point is equation (4.1.11), the extended trapezoidal rule. There are

two facts about the trapezoidal rule that make it the starting point for a variety of
algorithms. One fact is rather obvious, while the second is rather “deep.”

The obvious fact is that, for a fixed function f .x/ to be integrated between fixed
limits a and b, one can double the number of intervals in the extended trapezoidal
rule without losing the benefit of previous work. The coarsest implementation of the
trapezoidal rule is to average the function at its endpoints a and b. The first stage
of refinement is to add to this average the value of the function at the halfway point.
The second stage of refinement is to add the values at the 1/4 and 3/4 points. And so
on (see Figure 4.2.1).

As we will see, a number of elementary quadrature algorithms involve adding
successive stages of refinement. It is convenient to encapsulate this feature in a
Quadrature structure:

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 163 — #185 ✐
✐

✐ ✐

4.2 Elementary Algorithms 163

struct Quadrature{ quadrature.h
Abstract base class for elementary quadrature algorithms.

Int n; Current level of refinement.
virtual Doub next() = 0;
Returns the value of the integral at the nth stage of refinement. The function next() must
be defined in the derived class.

};

Then the Trapzd structure is derived from this as follows:

template<class T> quadrature.h
struct Trapzd : Quadrature {
Routine implementing the extended trapezoidal rule.

Doub a,b,s; Limits of integration and current value of integral.
T &func;
Trapzd() {};
Trapzd(T &funcc, const Doub aa, const Doub bb) :

func(funcc), a(aa), b(bb) {n=0;}
The constructor takes as inputs func, the function or functor to be integrated between
limits a and b, also input.

Doub next() {
Returns the nth stage of refinement of the extended trapezoidal rule. On the first call (n=1),

the routine returns the crudest estimate of
R b
a f .x/dx. Subsequent calls set n=2,3,... and

improve the accuracy by adding 2n-2 additional interior points.
Doub x,tnm,sum,del;
Int it,j;
n++;
if (n == 1) {

return (s=0.5*(b-a)*(func(a)+func(b)));
} else {

for (it=1,j=1;j<n-1;j++) it <<= 1;
tnm=it;
del=(b-a)/tnm; This is the spacing of the points to be added.
x=a+0.5*del;
for (sum=0.0,j=0;j<it;j++,x+=del) sum += func(x);
s=0.5*(s+(b-a)*sum/tnm); This replaces s by its refined value.
return s;

}
}

};

Note that Trapzd is templated on the whole struct and does not just contain a
templated function. This is necessary because it retains a reference to the supplied
function or functor as a member variable.

The Trapzd structure is a workhorse that can be harnessed in several ways. The
simplest and crudest is to integrate a function by the extended trapezoidal rule where
you know in advance (we can’t imagine how!) the number of steps you want. If you
want 2M C 1, you can accomplish this by the fragment

Ftor func; Functor func here has no parameters.
Trapzd<Ftor> s(func,a,b);
for(j=1;j<=m+1;j++) val=s.next();

with the answer returned as val. Here Ftor is a functor containing the function to
be integrated.

Much better, of course, is to refine the trapezoidal rule until some specified
degree of accuracy has been achieved. A function for this is

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 164 — #186 ✐
✐

✐ ✐

164 Chapter 4. Integration of Functions

template<class T>quadrature.h
Doub qtrap(T &func, const Doub a, const Doub b, const Doub eps=1.0e-10) {
Returns the integral of the function or functor func from a to b. The constants EPS can be
set to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by the trapezoidal rule.

const Int JMAX=20;
Doub s,olds=0.0; Initial value of olds is arbitrary.
Trapzd<T> t(func,a,b);
for (Int j=0;j<JMAX;j++) {

s=t.next();
if (j > 5) Avoid spurious early convergence.

if (abs(s-olds) < eps*abs(olds) ||
(s == 0.0 && olds == 0.0)) return s;

olds=s;
}
throw("Too many steps in routine qtrap");

}

The optional argument eps sets the desired fractional accuracy. Unsophisti-
cated as it is, routine qtrap is in fact a fairly robust way of doing integrals of func-
tions that are not very smooth. Increased sophistication will usually translate into
a higher-order method whose efficiency will be greater only for sufficiently smooth
integrands. qtrap is the method of choice, e.g., for an integrand that is a function
of a variable that is linearly interpolated between measured data points. Be sure that
you do not require too stringent an eps, however: If qtrap takes too many steps
in trying to achieve your required accuracy, accumulated roundoff errors may start
increasing, and the routine may never converge. A value of 10!10 or even smaller is
usually no problem in double precision when the convergence is moderately rapid,
but not otherwise. (Of course, very few problems really require such precision.)

We come now to the “deep” fact about the extended trapezoidal rule, equation
(4.1.11). It is this: The error of the approximation, which begins with a term of
order 1=N 2, is in fact entirely even when expressed in powers of 1=N . This follows
directly from the Euler-Maclaurin summation formula,
Z xN!1

x0

f .x/dx D h
!
1

2
f0 C f1 C f2 C ! ! !C fN!2 C

1

2
fN!1

"

" B2h
2

2Š
.f 0N!1 " f 00/ " ! ! ! "

B2kh
2k

.2k/Š
.f

.2k!1/
N!1 " f .2k!1/0 / " ! ! !

(4.2.1)
Here B2k is a Bernoulli number, defined by the generating function

t

et " 1 D
1X

nD0
Bn
tn

nŠ
(4.2.2)

with the first few even values (odd values vanish except for B1 D "1=2)

B0 D 1 B2 D
1

6
B4 D "

1

30
B6 D

1

42

B8 D "
1

30
B10 D

5

66
B12 D "

691

2730

(4.2.3)

Equation (4.2.1) is not a convergent expansion, but rather only an asymptotic expan-
sion whose error when truncated at any point is always less than twice the magnitude

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 165 — #187 ✐
✐

✐ ✐

4.2 Elementary Algorithms 165

of the first neglected term. The reason that it is not convergent is that the Bernoulli
numbers become very large, e.g.,

B50 D
495057205241079648212477525

66

The key point is that only even powers of h occur in the error series of (4.2.1).
This fact is not, in general, shared by the higher-order quadrature rules in !4.1. For
example, equation (4.1.12) has an error series beginning with O.1=N 3/, but contin-
uing with all subsequent powers of N : 1=N 4, 1=N 5, etc.

Suppose we evaluate (4.1.11) with N steps, getting a result SN , and then again
with 2N steps, getting a result S2N . (This is done by any two consecutive calls of
Trapzd.) The leading error term in the second evaluation will be 1/4 the size of the
error in the first evaluation. Therefore the combination

S D 4
3S2N ! 1

3SN (4.2.4)

will cancel out the leading order error term. But there is no error term of order 1=N 3,
by (4.2.1). The surviving error is of order 1=N 4, the same as Simpson’s rule. In fact,
it should not take long for you to see that (4.2.4) is exactly Simpson’s rule (4.1.13),
alternating 2/3’s, 4/3’s, and all. This is the preferred method for evaluating that rule,
and we can write it as a routine exactly analogous to qtrap above:

template<class T> quadrature.h
Doub qsimp(T &func, const Doub a, const Doub b, const Doub eps=1.0e-10) {
Returns the integral of the function or functor func from a to b. The constants EPS can be
set to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by Simpson’s rule.

const Int JMAX=20;
Doub s,st,ost=0.0,os=0.0;
Trapzd<T> t(func,a,b);
for (Int j=0;j<JMAX;j++) {

st=t.next();
s=(4.0*st-ost)/3.0; Compare equation (4.2.4), above.
if (j > 5) Avoid spurious early convergence.

if (abs(s-os) < eps*abs(os) ||
(s == 0.0 && os == 0.0)) return s;

os=s;
ost=st;

}
throw("Too many steps in routine qsimp");

}

The routine qsimp will in general be more efficient than qtrap (i.e., require
fewer function evaluations) when the function to be integrated has a finite fourth
derivative (i.e., a continuous third derivative). The combination of qsimp and its
necessary workhorse Trapzd is a good one for light-duty work.

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
!3.1.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), !7.4.1 – !7.4.2.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), !5.3.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 166 — #188 ✐
✐

✐ ✐

166 Chapter 4. Integration of Functions

4.3 Romberg Integration

We can view Romberg’s method as the natural generalization of the routine
qsimp in the last section to integration schemes that are of higher order than Simp-
son’s rule. The basic idea is to use the results from k successive refinements of the
extended trapezoidal rule (implemented in trapzd) to remove all terms in the error
series up to but not including O.1=N 2k/. The routine qsimp is the case of k D 2.
This is one example of a very general idea that goes by the name of Richardson’s de-
ferred approach to the limit: Perform some numerical algorithm for various values
of a parameter h, and then extrapolate the result to the continuum limit h D 0.

Equation (4.2.4), which subtracts off the leading error term, is a special case of
polynomial extrapolation. In the more general Romberg case, we can use Neville’s
algorithm (see !3.2) to extrapolate the successive refinements to zero stepsize. Ne-
ville’s algorithm can in fact be coded very concisely within a Romberg integration
routine. For clarity of the program, however, it seems better to do the extrapolation
by a function call to Poly_interp::rawinterp, as given in !3.2.

template <class T>romberg.h
Doub qromb(T &func, Doub a, Doub b, const Doub eps=1.0e-10) {
Returns the integral of the function or functor func from a to b. Integration is performed by
Romberg’s method of order 2K, where, e.g., K=2 is Simpson’s rule.

const Int JMAX=20, JMAXP=JMAX+1, K=5;
Here EPS is the fractional accuracy desired, as determined by the extrapolation error es-
timate; JMAX limits the total number of steps; K is the number of points used in the
extrapolation.
VecDoub s(JMAX),h(JMAXP); These store the successive trapezoidal approxi-

mations and their relative stepsizes.Poly_interp polint(h,s,K);
h[0]=1.0;
Trapzd<T> t(func,a,b);
for (Int j=1;j<=JMAX;j++) {

s[j-1]=t.next();
if (j >= K) {

Doub ss=polint.rawinterp(j-K,0.0);
if (abs(polint.dy) <= eps*abs(ss)) return ss;

}
h[j]=0.25*h[j-1];
This is a key step: The factor is 0.25 even though the stepsize is decreased by only
0.5. This makes the extrapolation a polynomial in h2 as allowed by equation (4.2.1),
not just a polynomial in h.

}
throw("Too many steps in routine qromb");

}

The routine qromb is quite powerful for sufficiently smooth (e.g., analytic) in-
tegrands, integrated over intervals that contain no singularities, and where the end-
points are also nonsingular. qromb, in such circumstances, takes many, many fewer
function evaluations than either of the routines in !4.2. For example, the integral

Z 2

0

x4 log.x C
p
x2 C 1/dx

converges (with parameters as shown above) on the second extrapolation, after just
6 calls to trapzd, while qsimp requires 11 calls (32 times as many evaluations of
the integrand) and qtrap requires 19 calls (8192 times as many evaluations of the
integrand).

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 167 — #189 ✐
✐

✐ ✐

4.4 Improper Integrals 167

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
!3.4 – !3.5.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), !7.4.1 – !7.4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), !4.10–2.

4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

! its integrand goes to a finite limiting value at finite upper and lower limits, but
cannot be evaluated right on one of those limits (e.g., sin x=x at x D 0)
! its upper limit is1 , or its lower limit is "1
! it has an integrable singularity at either limit (e.g., x!1=2 at x D 0)
! it has an integrable singularity at a known place between its upper and lower

limits
! it has an integrable singularity at an unknown place between its upper and

lower limits

If an integral is infinite (e.g.,
R1
1 x!1dx), or does not exist in a limiting sense

(e.g.,
R1
!1 cos xdx), we do not call it improper; we call it impossible. No amount of

clever algorithmics will return a meaningful answer to an ill-posed problem.
In this section we will generalize the techniques of the preceding two sections

to cover the first four problems on the above list. A more advanced discussion of
quadrature with integrable singularities occurs in Chapter 19, notably !19.3. The
fifth problem, singularity at an unknown location, can really only be handled by the
use of a variable stepsize differential equation integration routine, as will be given in
Chapter 17, or an adaptive quadrature routine such as in !4.7.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
one that is an open formula in the sense of !4.1, i.e., does not require the integrand to
be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is the
best choice. The reason is that (4.1.19) shares with (4.1.11) the “deep” property of
having an error series that is entirely even in h. Indeed there is a formula, not as well
known as it ought to be, called the Second Euler-Maclaurin summation formula,
Z xN!1

x0

f .x/dx D hŒf1=2 C f3=2 C f5=2 C # # #C fN!5=2 C fN!3=2"

C B2h
2

4
.f 0N!1 " f 00/C # # #

C B2kh
2k

.2k/Š
.1 " 2!2kC1/.f .2k!1/N!1 " f .2k!1/0 /C # # #

(4.4.1)

This equation can be derived by writing out (4.2.1) with stepsize h, then writing it
out again with stepsize h=2, and then subtracting the first from twice the second.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 168 — #190 ✐
✐

✐ ✐

168 Chapter 4. Integration of Functions

It is not possible to double the number of steps in the extended midpoint rule
and still have the benefit of previous function evaluations (try it!). However, it is
possible to triple the number of steps and do so. Shall we do this, or double and
accept the loss? On the average, tripling does a factor

p
3 of unnecessary work,

since the “right” number of steps for a desired accuracy criterion may in fact fall
anywhere in the logarithmic interval implied by tripling. For doubling, the factor
is only

p
2, but we lose an extra factor of 2 in being unable to use all the previous

evaluations. Since 1:732 < 2 ! 1:414, it is better to triple.
Here is the resulting structure, which is directly comparable to Trapzd.

template <class T>quadrature.h
struct Midpnt : Quadrature {
Routine implementing the extended midpoint rule.

Doub a,b,s; Limits of integration and current value of inte-
gral.T &funk;

Midpnt(T &funcc, const Doub aa, const Doub bb) :
funk(funcc), a(aa), b(bb) {n=0;}
The constructor takes as inputs func, the function or functor to be integrated between
limits a and b, also input.

Doub next(){
Returns the nth stage of refinement of the extended midpoint rule. On the first call (n=1),

the routine returns the crudest estimate of
R b
a f .x/dx. Subsequent calls set n=2,3,... and

improve the accuracy by adding .2=3/! 3n-1 additional interior points.
Int it,j;
Doub x,tnm,sum,del,ddel;
n++;
if (n == 1) {

return (s=(b-a)*func(0.5*(a+b)));
} else {

for(it=1,j=1;j<n-1;j++) it *= 3;
tnm=it;
del=(b-a)/(3.0*tnm);
ddel=del+del; The added points alternate in spacing be-

tween del and ddel.x=a+0.5*del;
sum=0.0;
for (j=0;j<it;j++) {

sum += func(x);
x += ddel;
sum += func(x);
x += del;

}
s=(s+(b-a)*sum/tnm)/3.0; The new sum is combined with the old inte-

gral to give a refined integral.return s;
}

}
virtual Doub func(const Doub x) {return funk(x);} Identity mapping.

};

You may have spotted a seemingly unnecessary extra level of indirection in
Midpnt, namely its calling the user-supplied function funk through an identity func-
tion func. The reason for this is that we are going to use mappings other than the
identity mapping between funk and func to solve the problems of improper inte-
grals listed above. The new quadratures will simply be derived from Midpnt with
func overridden.

The structure Midpnt could be used to exactly replace Trapzd in a driver
routine like qtrap (!4.2); one could simply change Trapzd<T> t(func,a,b) to
Midpnt<T> t(func,a,b), and perhaps also decrease the parameter JMAX since

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 169 — #191 ✐
✐

✐ ✐

4.4 Improper Integrals 169

3JMAX!1 (from step tripling) is a much larger number than 2JMAX!1 (step doubling).
The open formula implementation analogous to Simpson’s rule (qsimp in !4.2) could
also substitute Midpnt for Trapzd, decreasing JMAX as above, but now also changing
the extrapolation step to be

s=(9.0*st-ost)/8.0;

since, when the number of steps is tripled, the error decreases to 1=9th its size, not
1=4th as with step doubling.

Either the thus modified qtrap or qsimp will fix the first problem on the list
at the beginning of this section. More sophisticated, and allowing us to fix more
problems, is to generalize Romberg integration in like manner:

template<class T> romberg.h
Doub qromo(Midpnt<T> &q, const Doub eps=3.0e-9) {
Romberg integration on an open interval. Returns the integral of a function using any specified
elementary quadrature algorithm q and Romberg’s method. Normally q will be an open formula,
not evaluating the function at the endpoints. It is assumed that q triples the number of steps
on each call, and that its error series contains only even powers of the number of steps. The
routines midpnt, midinf, midsql, midsqu, midexp are possible choices for q. The constants
below have the same meanings as in qromb.

const Int JMAX=14, JMAXP=JMAX+1, K=5;
VecDoub h(JMAXP),s(JMAX);
Poly_interp polint(h,s,K);
h[0]=1.0;
for (Int j=1;j<=JMAX;j++) {

s[j-1]=q.next();
if (j >= K) {

Doub ss=polint.rawinterp(j-K,0.0);
if (abs(polint.dy) <= eps*abs(ss)) return ss;

}
h[j]=h[j-1]/9.0; This is where the assumption of step tripling and an even

error series is used.}
throw("Too many steps in routine qromo");

}

Notice that we now pass a Midpnt object instead of the user function and limits
of integration. There is a good reason for this, as we will see below. It does, however,
mean that you have to bind things together before calling qromo, something like this,
where we integrate from a to b:

Midpnt<Ftor> q(ftor,a,b);
Doub integral=qromo(q);

or, for a bare function,

Midpnt<Doub(Doub)> q(fbare,a,b);
Doub integral=qromo(q);

Laid back C++ compilers will let you condense these to

Doub integral = qromo(Midpnt<Ftor>(Ftor(),a,b));

or

Doub integral = qromo(Midpnt<Doub(Doub)>(fbare,a,b));

but uptight compilers may object to the way that a temporary is passed by reference,
in which case use the two-line forms above.

As we shall now see, the function qromo, with its peculiar interface, is an ex-
cellent driver routine for solving all the other problems of improper integrals in our
first list (except the intractable fifth).

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 170 — #192 ✐
✐

✐ ✐

170 Chapter 4. Integration of Functions

The basic trick for improper integrals is to make a change of variables to elim-
inate the singularity or to map an infinite range of integration to a finite one. For
example, the identity

Z b

a

f .x/dx D
Z 1=a

1=b

1

t2
f

!
1

t

"
dt ab > 0 (4.4.2)

can be used with either b ! 1 and a positive, or with a ! !1 and b negative,
and works for any function that decreases toward infinity faster than 1=x2.

You can make the change of variable implied by (4.4.2) either analytically and
then use, e.g., qromo and Midpnt to do the numerical evaluation, or you can let the
numerical algorithm make the change of variable for you. We prefer the latter method
as being more transparent to the user. To implement equation (4.4.2) we simply write
a modified version of Midpnt, called Midinf, which allows b to be infinite (or, more
precisely, a very large number on your particular machine, such as 1" 1099), or a to
be negative and infinite. Since all the machinery is already in place in Midpnt, we
write Midinf as a derived class and simply override the mapping function.

template <class T>quadrature.h
struct Midinf : Midpnt<T>{
This routine is an exact replacement for midpnt, i.e., returns the nth stage of refinement of the
integral of funcc from aa to bb, except that the function is evaluated at evenly spaced points in
1=x rather than in x. This allows the upper limit bb to be as large and positive as the computer
allows, or the lower limit aa to be as large and negative, but not both. aa and bb must have
the same sign.

Doub func(const Doub x) {
return Midpnt<T>::funk(1.0/x)/(x*x); Effect the change of variable.

}
Midinf(T &funcc, const Doub aa, const Doub bb) :

Midpnt<T>(funcc, aa, bb) {
Midpnt<T>::a=1.0/bb; Set the limits of integration.
Midpnt<T>::b=1.0/aa;

}
};

An integral from 2 to1, for example, might be calculated by

Midinf<Ftor> q(ftor,2.,1.e99);
Doub integral=qromo(q);

If you need to integrate from a negative lower limit to positive infinity, you do this
by breaking the integral into two pieces at some positive value, for example,

Midpnt<Ftor> q1(ftor,-5.,2.);
Midinf<Ftor> q2(ftor,2.,1.e99);
integral=qromo(q1)+qromo(q2);

Where should you choose the breakpoint? At a sufficiently large positive value so
that the function funk is at least beginning to approach its asymptotic decrease to
zero value at infinity. The polynomial extrapolation implicit in the second call to
qromo deals with a polynomial in 1=x, not in x.

To deal with an integral that has an integrable power-law singularity at its lower
limit, one also makes a change of variable. If the integrand diverges as .x ! a/!! ,
0 # ! < 1, near x D a, use the identity

Z b

a

f .x/dx D 1

1 ! !

Z .b!a/1!!

0

t
!
1!! f .t

1
1!! C a/dt .b > a/ (4.4.3)

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 171 — #193 ✐
✐

✐ ✐

4.4 Improper Integrals 171

If the singularity is at the upper limit, use the identity

Z b

a

f .x/dx D 1

1 ! !

Z .b!a/1!!

0

t
!
1!! f .b ! t 1

1!! /dt .b > a/ (4.4.4)

If there is a singularity at both limits, divide the integral at an interior breakpoint as
in the example above.

Equations (4.4.3) and (4.4.4) are particularly simple in the case of inverse square-
root singularities, a case that occurs frequently in practice:

Z b

a

f .x/dx D
Z pb!a

0

2tf .aC t2/dt .b > a/ (4.4.5)

for a singularity at a, and

Z b

a

f .x/dx D
Z pb!a

0

2tf .b ! t2/dt .b > a/ (4.4.6)

for a singularity at b. Once again, we can implement these changes of variable
transparently to the user by defining substitute routines for Midpnt that make the
change of variable automatically:

template <class T> quadrature.h
struct Midsql : Midpnt<T>{
This routine is an exact replacement for midpnt, except that it allows for an inverse square-root
singularity in the integrand at the lower limit aa.

Doub aorig;
Doub func(const Doub x) {

return 2.0*x*Midpnt<T>::funk(aorig+x*x); Effect the change of variable.
}
Midsql(T &funcc, const Doub aa, const Doub bb) :

Midpnt<T>(funcc, aa, bb), aorig(aa) {
Midpnt<T>::a=0;
Midpnt<T>::b=sqrt(bb-aa);

}
};

Similarly,

template <class T> quadrature.h
struct Midsqu : Midpnt<T>{
This routine is an exact replacement for midpnt, except that it allows for an inverse square-root
singularity in the integrand at the upper limit bb.

Doub borig;
Doub func(const Doub x) {

return 2.0*x*Midpnt<T>::funk(borig-x*x); Effect the change of variable.
}
Midsqu(T &funcc, const Doub aa, const Doub bb) :

Midpnt<T>(funcc, aa, bb), borig(bb) {
Midpnt<T>::a=0;
Midpnt<T>::b=sqrt(bb-aa);

}
};

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 172 — #194 ✐
✐

✐ ✐

172 Chapter 4. Integration of Functions

One last example should suffice to show how these formulas are derived in
general. Suppose the upper limit of integration is infinite and the integrand falls
off exponentially. Then we want a change of variable that maps e!xdx into .˙/dt
(with the sign chosen to keep the upper limit of the new variable larger than the lower
limit). Doing the integration gives by inspection

t D e!x or x D ! log t (4.4.7)

so that Z xD1

xDa
f .x/dx D

Z tDe!a

tD0
f .! log t /

dt

t
(4.4.8)

The user-transparent implementation would be

template <class T>quadrature.h
struct Midexp : Midpnt<T>{
This routine is an exact replacement for midpnt, except that bb is assumed to be infinite (value
passed not actually used). It is assumed that the function funk decreases exponentially rapidly
at infinity.

Doub func(const Doub x) {
return Midpnt<T>::funk(-log(x))/x; Effect the change of variable.

}
Midexp(T &funcc, const Doub aa, const Doub bb) :

Midpnt<T>(funcc, aa, bb) {
Midpnt<T>::a=0.0;
Midpnt<T>::b=exp(-aa);

}
};

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), !7.4.3, p. 294.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
!3.7.

4.5 Quadrature by Variable Transformation
Imagine a simple general quadrature algorithm that is very rapidly convergent

and allows you to ignore endpoint singularities completely. Sound too good to be
true? In this section we’ll describe an algorithm that in fact handles large classes of
integrals in exactly this way.

Consider evaluating the integral

I D
Z b

a

f .x/dx (4.5.1)

As we saw in the construction of equations (4.1.11) – (4.1.20), quadrature formulas
of arbitrarily high order can be constructed with interior weights unity, just by tun-
ing the weights near the endpoints. But if a function dies off rapidly enough near

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 173 — #195 ✐
✐

✐ ✐

4.5 Quadrature by Variable Transformation 173

the endpoints, then those weights don’t matter at all. In such a case, an N -point
quadrature with uniform weights converges converges exponentially with N . (For
a more rigorous motivation of this idea, see !4.5.1. For the connection to Gaussian
quadrature, see the discussion at the end of !20.7.4.)

What about a function that doesn’t vanish at the endpoints? Consider a change
of variables x D x.t/, such that x 2 Œa; b"! t 2 Œc; d ":

I D
Z d

c

f Œx.t/"
dx

dt
dt (4.5.2)

Choose the transformation such that the factor dx=dt goes rapidly to zero at the end-
points of the interval. Then the simple trapezoidal rule applied to (4.5.2) will give ex-
tremely accurate results. (In this section, we’ll call quadrature with uniform weights
trapezoidal quadrature, with the understanding that it’s a matter of taste whether you
weight the endpoints with weight 1=2 or 1, since they don’t count anyway.)

Even when f .x/ has integrable singularities at the endpoints of the interval,
their effect can be overwhelmed by a suitable transformation x D x.t/. One need
not tailor the transformation to the specific nature of the singularity: We will dis-
cuss several transformations that are effective at obliterating just about any kind of
endpoint singularity.

The first transformation of this kind was introduced by Schwartz [1] and has
become known as the TANH rule:

x D 1

2
.b C a/C 1

2
.b ! a/ tanh t; x 2 Œa; b"! t 2 Œ!1;1"

dx

dt
D 1

2
.b ! a/ sech2 t D 2

b ! a .b ! x/.x ! a/
(4.5.3)

The sharp decrease of sech2 t as t ! ˙1 explains the efficiency of the algorithm
and its ability to deal with singularities. Another similar algorithm is the IMT rule [2].
However, x.t/ for the IMT rule is not given by a simple analytic expression, and its
performance is not too different from the TANH rule.

There are two kinds of errors to consider when using something like the TANH
rule. The discretization error is just the truncation error because you are using the
trapezoidal rule to approximate I . The trimming error is the result of truncating
the infinite sum in the trapezoidal rule at a finite value of N . (Recall that the limits
are now ˙1.) You might think that the sharper the decrease of dx=dt as t !
˙1, the more efficient the algorithm. But if the decrease is too sharp, then the
density of quadrature points near the center of the original interval Œa; b" is low and
the discretization error is large. The optimal strategy is to try to arrange that the
discretization and trimming errors are approximately equal.

For the TANH rule, Schwartz [1] showed that the discretization error is of order

#d " e!2!w=h (4.5.4)

where w is the distance from the real axis to the nearest singularity of the integrand.
There is a pole when sech2 t ! 1, i.e., when t D ˙i$=2. If there are no poles
closer to the real axis in f .x/, thenw D $=2. The trimming error, on the other hand,
is

#t " sech2 tN " e!2Nh (4.5.5)

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 174 — #196 ✐
✐

✐ ✐

174 Chapter 4. Integration of Functions

Setting !d ! !t , we find

h ! "

.2N /1=2
; ! ! e!!.2N/1=2 (4.5.6)

as the optimum h and the corresponding error. Note that ! decreases with N faster
than any power of N . If f is singular at the endpoints, this can modify equation
(4.5.5) for !t . This usually results in the constant " in (4.5.6) being reduced. Rather
than developing an algorithm where we try to estimate the optimal h for each inte-
grand a priori, we recommend simple step doubling and testing for convergence. We
expect convergence to set in for h around the value given by equation (4.5.6).

The TANH rule essentially uses an exponential mapping to achieve the desired
rapid fall-off at infinity. On the theory that more is better, one can try repeating the
procedure. This leads to the DE (double exponential) rule:

x D 1

2
.b C a/C 1

2
.b " a/ tanh.c sinh t /; x 2 Œa; b#! t 2 Œ"1;1#

dx

dt
D 1

2
.b " a/ sech2.c sinh t /c cosh t ! exp."c exp jt j/ as jt j ! 1

(4.5.7)

Here the constant c is usually taken to be 1 or "=2. (Values larger than "=2 are not
useful since w D "=2 for 0 < c # "=2, but w decreases rapidly for larger c.) By an
analysis similar to equations (4.5.4) – (4.5.6), one can show that the optimal h and
corresponding error for the DE rule are of order

h ! log.2"Nw=c/
N

; ! ! e!kN= logN (4.5.8)

where k is a constant. The improved performance of the DE rule over the TANH
rule indicated by comparing equations (4.5.6) and (4.5.8) is borne out in practice.

4.5.1 Exponential Convergence of the Trapezoidal Rule

The error in evaluating the integral (4.5.1) by the trapezoidal rule is given by the Euler-
Maclaurin summation formula,

I $ h

2
Œf .a/Cf .b/#Ch

N!1X

jD1
f .aCjh/"

1X

kD1

B2kh
2k

.2k/Š
Œf .2k!1/.b/"f .2k!1/.a/# (4.5.9)

Note that this is in general an asymptotic expansion, not a convergent series. If all the deriva-
tives of the function f vanish at the endpoints, then all the “correction terms” in equation
(4.5.9) are zero. The error in this case is very small — it goes to zero with h faster than any
power of h. We say that the method converges exponentially. The straight trapezoidal rule
is thus an excellent method for integrating functions such as exp."x2/ on ."1;1/, whose
derivatives all vanish at the endpoints.

The class of transformations that will produce exponential convergence for a function
whose derivatives do not all vanish at the endpoints is those for which dx=dt and all its
derivatives go to zero at the endpoints of the interval. For functions with singularities at the
endpoints, we require that f .x/ dx=dt and all its derivatives vanish at the endpoints. This is
a more precise statement of “dx=dt goes rapidly to zero” given above.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 175 — #197 ✐
✐

✐ ✐

4.5 Quadrature by Variable Transformation 175

4.5.2 Implementation
Implementing the DE rule is a little tricky. It’s not a good idea to simply use

Trapzd on the function f .x/ dx=dt . First, the factor sech2.c sinh t / in equation
(4.5.7) can overflow if sech is computed as 1= cosh. We follow [3] and avoid this by
using the variable q defined by

q D e!2 sinh t (4.5.10)

(we take c D 1 for simplicity) so that

dx

dt
D 2.b ! a/ q

.1C q/2 cosh t (4.5.11)

For large positive t , q just underflows harmlessly to zero. Negative t is handled by
using the symmetry of the trapezoidal rule about the midpoint of the interval. We
write

I ' h
NX

jD!N
f .xj /

dx

dt

ˇ̌
ˇ̌
j

D h
!
f Œ.aC b/=2! dx

dt

ˇ̌
ˇ̌
0

C
NX

jD1
Œf .aC ıj /C f .b ! ıj /!

dx

dt

ˇ̌
ˇ̌
j

" (4.5.12)

where
ı D b ! x D .b ! a/ q

1C q (4.5.13)

A second possible problem is that cancellation errors in computing aCı or b!ı
can cause the computed value of f .x/ to blow up near the endpoint singularities.
To handle this, you should code the function f .x/ as a function of two arguments,
f .x; ı/. Then compute the singular part using ı directly. For example, code the
function x!˛.1 ! x/!ˇ as ı!˛.1 ! x/!ˇ near x D 0 and x!˛ı!ˇ near x D 1. (See
"6.10 for another example of a f .x; ı/.) Accordingly, the routine DErule below
expects the function f to have two arguments. If your function has no singularities,
or the singularities are “mild” (e.g., no worse than logarithmic), you can ignore ı
when coding f .x; ı/ and code it as if it were just f .x/.

The routine DErule implements equation (4.5.12). It contains an argument hmax

that corresponds to the upper limit for t . The first approximation to I is given by the
first term on the right-hand side of (4.5.12) with h D hmax. Subsequent refinements
correspond to halving h as usual. We typically take hmax D 3:7 in double precision,
corresponding to q D 3" 10!18. This is generally adequate for “mild” singularities,
like logarithms. If you want high accuracy for stronger singularities, you may have
to increase hmax. For example, for 1=

p
x you need hmax D 4:3 to get full double

precision. This corresponds to q D 10!32 D .10!16/2, as you might expect.

template<class T> derule.h
struct DErule : Quadrature {
Structure for implementing the DE rule.

Doub a,b,hmax,s;
T &func;

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 176 — #198 ✐
✐

✐ ✐

176 Chapter 4. Integration of Functions

DErule(T &funcc, const Doub aa, const Doub bb, const Doub hmaxx=3.7)
: func(funcc), a(aa), b(bb), hmax(hmaxx) {n=0;}

Constructor. funcc is the function or functor that provides the function to be integrated between
limits aa and bb, also input. The function operator in funcc takes two arguments, x and ı, as
described in the text. The range of integration in the transformed variable t is .!hmaxx; hmaxx/.
Typical values of hmaxx are 3.7 for logarithmic or milder singularities, and 4.3 for square-root
singularities, as discussed in the text.

Doub next() {
On the first call to the function next (n D 1), the routine returns the crudest estimate ofR b
a f .x/dx. Subsequent calls to next (n D 2; 3; : : :) will improve the accuracy by adding
2n!1 additional interior points.

Doub del,fact,q,sum,t,twoh;
Int it,j;
n++;
if (n == 1) {

fact=0.25;
return s=hmax*2.0*(b-a)*fact*func(0.5*(b+a),0.5*(b-a));

} else {
for (it=1,j=1;j<n-1;j++) it <<= 1;
twoh=hmax/it; Twice the spacing of the points to be added.
t=0.5*twoh;
for (sum=0.0,j=0;j<it;j++) {

q=exp(-2.0*sinh(t));
del=(b-a)*q/(1.0+q);
fact=q/SQR(1.0+q)*cosh(t);
sum += fact*(func(a+del,del)+func(b-del,del));
t += twoh;

}
return s=0.5*s+(b-a)*twoh*sum; Replace s by its refined value and return.

}
}

};

If the double exponential rule (DE rule) is generally better than the single expo-
nential rule (TANH rule), why don’t we keep going and use a triple exponential rule,
quadruple exponential rule, . . . ? As we mentioned earlier, the discretization error is
dominated by the pole nearest to the real axis. It turns out that beyond the double
exponential the poles come nearer and nearer to the real axis, so the methods tend to
get worse, not better.

If the function to be integrated itself has a pole near the real axis (much nearer
than the !=2 that comes from the DE or TANH rules), the convergence of the method
slows down. In analytically tractable cases, one can find a “pole correction term” to
add to the trapezoidal rule to restore rapid convergence [4].

4.5.3 Infinite Ranges
Simple variations of the TANH or DE rules can be used if either or both of the

limits of integration is infinite:

Range TANH Rule DE Rule Mixed Rule

.0;1/ x D et x D e2c sinh t x D et!e!t

.!1;1/ x D sinh t x D sinh.c sinh t / —

(4.5.14)

The last column gives a mixed rule for functions that fall off rapidly (e!x or e!x
2
) at

infinity. It is a DE rule at x D 0 but only a single exponential at infinity. The expo-

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 177 — #199 ✐
✐

✐ ✐

4.5 Quadrature by Variable Transformation 177

nential fall-off of the integrand makes it behave like a DE rule there too. The mixed
rule for .!1;1/ is constructed by splitting the range into .!1; 0/ and .0;1/ and
making the substitution x ! !x in the first range. This gives two integrals on
.0;1/.

To implement the DE rule for infinite ranges we don’t need the precautions we
used in coding the finite range DE rule. It’s fine to simply use the routine Trapzd
directly as a function of t , with the function func that it calls returning f .x/ dx=dt .
So if funk is your function returning f .x/, then you define the function func as a
function of t by code of the following form (for the mixed rule)

x=exp(t-exp(-t));
dxdt=x*(1.0+exp(-t));
return funk(x)*dxdt;

and pass func to Trapzd. The only care required is in deciding the range of integra-
tion. You want the contribution to the integral from the endpoints of the integration
to be negligible. For example, .!4; 4/ is typically adequate for x D exp.! sinh t /.

4.5.4 Examples
As examples of the power of these methods, consider the following integrals:

Z 1

0

log x log.1 ! x/ dx D 2 ! !
2

6
(4.5.15)

Z 1

0

1

x1=2.1C x/dx D ! (4.5.16)
Z 1

0

x!3=2 sin
x

2
e!x dx D Œ!.

p
5 ! 2/"1=2 (4.5.17)

Z 1

0

x!2=7e!x
2
dx D 1

2#.
5
14 / (4.5.18)

The integral (4.5.15) is easily handled by DErule. The routine converges to machine
precision (10!16) with about 30 function evaluations, completely unfazed by the
singularities at the endpoints. The integral (4.5.16) is an example of an integrand
that is singular at the origin and falls off slowly at infinity. The routine Midinf fails
miserably because of the slow fall-off. Yet the transformation x D exp.! sinh t /
again gives machine precision in about 30 function evaluations, integrating t over
the range .!4; 4/. By comparison, the transformation x D et for t in the range
.!90; 90/ requires about 500 function evaluations for the same accuracy.

The integral (4.5.17) combines a singularity at the origin with exponential fall-
off at infinity. Here the “mixed” transformation x D exp.t ! e!t / is best, requiring
about 60 function evaluations for t in the range .!4:5; 4/. Note that the exponential
fall-off is crucial here; these transformations fail completely for slowly decaying
oscillatory functions like x!3=2 sin x. Fortunately the series acceleration algorithms
of $5.3 work well in such cases.

The final integral (4.5.18) is similar to (4.5.17), and using the same transfor-
mation requires about the same number of function evaluations to achieve machine
precision. The range of t can be smaller, say .!4; 3/, because of the more rapid
fall-off of the integrand. Note that for all these integrals the number of function
evaluations would be double the number we quote if we are using step doubling to

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 178 — #200 ✐
✐

✐ ✐

178 Chapter 4. Integration of Functions

decide when the integrals have converged, since we need one extra set of trapezoidal
evaluations to confirm convergence. In many cases, however, you don’t need this
extra set of function evaluations: Once the method starts converging, the number of
significant digits approximately doubles with each iteration. Accordingly, you can
set the convergence criterion to stop the procedure when two successive iterations
agree to the square root of the desired precision. The last iteration will then have
approximately the required precision. Even without this trick, the method is quite
remarkable for the range of difficult integrals that it can tame efficiently.

An extended example of the use of the DE rule for finite and infinite ranges is
given in !6.10. There we give a routine for computing the generalized Fermi-Dirac
integrals

Fk."; #/ D
Z 1

0

xk.1C 1
2#x/

1=2

ex!! C 1 dx (4.5.19)

Another example is given in the routine Stiel in !4.6.

4.5.5 Relation to the Sampling Theorem
The sinc expansion of a function is

f .x/ '
1X

kD!1
f .kh/ sinc

h$
h
.x ! kh/

i
(4.5.20)

where sinc.x/ " sin x=x. The expansion is exact for a limited class of analytic
functions. However, it can be a good approximation for other functions too, and
the sampling theorem characterizes these functions, as will be discussed in !13.11.
There we will use the sinc expansion of e!x

2
to get an approximation for the complex

error function. Functions well-approximated by the sinc expansion typically fall off
rapidly as x ! ˙1, so truncating the expansion at k D ˙N still gives a good
approximation to f .x/.

If we integrate both sides of equation (4.5.20), we find

Z 1

!1
f .x/ dx ' h

1X

kD!1
f .kh/ (4.5.21)

which is just the trapezoidal formula! Thus, rapid convergence of the trapezoidal for-
mula for the integral of f corresponds to f being well-approximated by its sinc ex-
pansion. The various transformations described earlier can be used to map x ! x.t/
and produce good sinc approximations with uniform samples in t . These approxi-
mations can be used not only for the trapezoidal quadrature of f , but also for good
approximations to derivatives, integral transforms, Cauchy principal value integrals,
and solving differential and integral equations [5].

CITED REFERENCES AND FURTHER READING:

Schwartz, C. 1969, “Numerical Integration of Analytic Functions,” Journal of Computational
Physics, vol. 4, pp. 19–29.[1]

Iri, M., Moriguti, S., and Takasawa, Y. 1987, “On a Certain Quadrature Formula,” Journal of
Computational and Applied Mathematics, vol. 17, pp. 3–20. (English version of Japanese
article originally published in 1970.)[2]

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 179 — #201 ✐
✐

✐ ✐

4.6 Gaussian Quadratures and Orthogonal Polynomials 179

Evans, G.A., Forbes, R.C., and Hyslop, J. 1984, “The Tanh Transformation for Singular Integrals,”
International Journal of Computer Mathematics, vol. 15, pp. 339–358.[3]

Bialecki, B. 1989, BIT, “A Modified Sinc Quadrature Rule for Functions with Poles near the Arc
of Integration,” vol. 29, pp. 464–476.[4]

Stenger, F. 1981, “Numerical Methods Based on Whittaker Cardinal or Sinc Functions,” SIAM
Review, vol. 23, pp. 165–224.[5]

Takahasi, H., and Mori, H. 1973, “Quadrature Formulas Obtained by Variable Transformation,”
Numerische Mathematik, vol. 21, pp. 206–219.

Mori, M. 1985, “Quadrature Formulas Obtained by Variable Transformation and DE Rule,” Jour-
nal of Computational and Applied Mathematics, vol. 12&13, pp. 119–130.

Sikorski, K., and Stenger, F. 1984, “Optimal Quadratures in Hp Spaces,” ACM Transactions on
Mathematical Software, vol. 10, pp. 140–151; op. cit., pp. 152–160.

4.6 Gaussian Quadratures and Orthogonal
Polynomials

In the formulas of !4.1, the integral of a function was approximated by the sum
of its functional values at a set of equally spaced points, multiplied by certain aptly
chosen weighting coefficients. We saw that as we allowed ourselves more freedom
in choosing the coefficients, we could achieve integration formulas of higher and
higher order. The idea of Gaussian quadratures is to give ourselves the freedom to
choose not only the weighting coefficients, but also the location of the abscissas at
which the function is to be evaluated. They will no longer be equally spaced. Thus,
we will have twice the number of degrees of freedom at our disposal; it will turn out
that we can achieve Gaussian quadrature formulas whose order is, essentially, twice
that of the Newton-Cotes formula with the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a familiar
one, which cannot be overemphasized: High order is not the same as high accuracy.
High order translates to high accuracy only when the integrand is very smooth, in the
sense of being “well-approximated by a polynomial.”

There is, however, one additional feature of Gaussian quadrature formulas that
adds to their usefulness: We can arrange the choice of weights and abscissas to make
the integral exact for a class of integrands “polynomials times some known function
W.x/” rather than for the usual class of integrands “polynomials.” The function
W.x/ can then be chosen to remove integrable singularities from the desired integral.
GivenW.x/, in other words, and given an integerN , we can find a set of weights wj
and abscissas xj such that the approximation

Z b

a

W.x/f .x/dx !
N!1X

jD0
wjf .xj / (4.6.1)

is exact if f .x/ is a polynomial. For example, to do the integral

Z 1

!1

exp." cos2 x/p
1 " x2

dx (4.6.2)

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 180 — #202 ✐
✐

✐ ✐

180 Chapter 4. Integration of Functions

(not a very natural looking integral, it must be admitted), we might well be interested
in a Gaussian quadrature formula based on the choice

W.x/ D 1p
1 ! x2

(4.6.3)

in the interval .!1; 1/. (This particular choice is called Gauss-Chebyshev integration,
for reasons that will become clear shortly.)

Notice that the integration formula (4.6.1) can also be written with the weight
function W.x/ not overtly visible: Define g.x/ " W.x/f .x/ and vj " wj =W.xj /.
Then (4.6.1) becomes

Z b

a

g.x/dx #
N!1X

jD0
vjg.xj / (4.6.4)

Where did the function W.x/ go? It is lurking there, ready to give high-order accu-
racy to integrands of the form polynomials timesW.x/, and ready to deny high-order
accuracy to integrands that are otherwise perfectly smooth and well-behaved. When
you find tabulations of the weights and abscissas for a given W.x/, you have to de-
termine carefully whether they are to be used with a formula in the form of (4.6.1),
or like (4.6.4).

So far our introduction to Gaussian quadrature is pretty standard. However,
there is an aspect of the method that is not as widely appreciated as it should be: For
smooth integrands (after factoring out the appropriate weight function), Gaussian
quadrature converges exponentially fast as N increases, because the order of the
method, not just the density of points, increases with N . This behavior should be
contrasted with the power-law behavior (e.g., 1=N 2 or 1=N 4) of the Newton-Cotes
based methods in which the order remains fixed (e.g., 2 or 4) even as the density of
points increases. For a more rigorous discussion, see !20.7.4.

Here is an example of a quadrature routine that contains the tabulated abscissas
and weights for the case W.x/ D 1 and N D 10. Since the weights and abscissas
are, in this case, symmetric around the midpoint of the range of integration, there are
actually only five distinct values of each:

template <class T>qgaus.h
Doub qgaus(T &func, const Doub a, const Doub b)
Returns the integral of the function or functor func between a and b, by ten-point Gauss-
Legendre integration: the function is evaluated exactly ten times at interior points in the range
of integration.
{

Here are the abscissas and weights:
static const Doub x[]={0.1488743389816312,0.4333953941292472,

0.6794095682990244,0.8650633666889845,0.9739065285171717};
static const Doub w[]={0.2955242247147529,0.2692667193099963,

0.2190863625159821,0.1494513491505806,0.0666713443086881};
Doub xm=0.5*(b+a);
Doub xr=0.5*(b-a);
Doub s=0; Will be twice the average value of the function, since the

ten weights (five numbers above each used twice)
sum to 2.

for (Int j=0;j<5;j++) {
Doub dx=xr*x[j];
s += w[j]*(func(xm+dx)+func(xm-dx));

}
return s *= xr; Scale the answer to the range of integration.

}

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 181 — #203 ✐
✐

✐ ✐

4.6 Gaussian Quadratures and Orthogonal Polynomials 181

The above routine illustrates that one can use Gaussian quadratures without
necessarily understanding the theory behind them: One just locates tabulated weights
and abscissas in a book (e.g., [1] or [2]). However, the theory is very pretty, and it will
come in handy if you ever need to construct your own tabulation of weights and
abscissas for an unusual choice ofW.x/. We will therefore give, without any proofs,
some useful results that will enable you to do this. Several of the results assume that
W.x/ does not change sign inside .a; b/, which is usually the case in practice.

The theory behind Gaussian quadratures goes back to Gauss in 1814, who used
continued fractions to develop the subject. In 1826, Jacobi rederived Gauss’s results
by means of orthogonal polynomials. The systematic treatment of arbitrary weight
functions W.x/ using orthogonal polynomials is largely due to Christoffel in 1877.
To introduce these orthogonal polynomials, let us fix the interval of interest to be
.a; b/. We can define the “scalar product of two functions f and g over a weight
function W ” as

hf jgi !
Z b

a

W.x/f .x/g.x/dx (4.6.5)

The scalar product is a number, not a function of x. Two functions are said to be
orthogonal if their scalar product is zero. A function is said to be normalized if its
scalar product with itself is unity. A set of functions that are all mutually orthogonal
and also all individually normalized is called an orthonormal set.

We can find a set of polynomials (i) that includes exactly one polynomial of
order j , called pj .x/, for each j D 0; 1; 2; : : : , and (ii) all of which are mutually
orthogonal over the specified weight function W.x/. A constructive procedure for
finding such a set is the recurrence relation

p!1.x/ ! 0
p0.x/ ! 1

pjC1.x/ D .x " aj /pj .x/ " bjpj!1.x/ j D 0; 1; 2; : : :
(4.6.6)

where

aj D
˝
xpj jpj

˛
˝
pj jpj

˛ j D 0; 1; : : :

bj D
˝
pj jpj

˛
˝
pj!1jpj!1

˛ j D 1; 2; : : :
(4.6.7)

The coefficient b0 is arbitrary; we can take it to be zero.
The polynomials defined by (4.6.6) are monic, that is, the coefficient of their

leading term [xj for pj .x/] is unity. If we divide each pj .x/ by the constant
Œ
˝
pj jpj

˛
!1=2, we can render the set of polynomials orthonormal. One also encounters

orthogonal polynomials with various other normalizations. You can convert from a
given normalization to monic polynomials if you know that the coefficient of xj in
pj is "j , say; then the monic polynomials are obtained by dividing each pj by "j .
Note that the coefficients in the recurrence relation (4.6.6) depend on the adopted
normalization.

The polynomial pj .x/ can be shown to have exactly j distinct roots in the
interval .a; b/. Moreover, it can be shown that the roots of pj .x/ “interleave” the
j " 1 roots of pj!1.x/, i.e., there is exactly one root of the former in between each
two adjacent roots of the latter. This fact comes in handy if you need to find all the

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 182 — #204 ✐
✐

✐ ✐

182 Chapter 4. Integration of Functions

roots. You can start with the one root of p1.x/ and then, in turn, bracket the roots of
each higher j , pinning them down at each stage more precisely by Newton’s rule or
some other root-finding scheme (see Chapter 9).

Why would you ever want to find all the roots of an orthogonal polynomial
pj .x/? Because the abscissas of the N -point Gaussian quadrature formulas (4.6.1)
and (4.6.4) with weighting functionW.x/ in the interval .a; b/ are precisely the roots
of the orthogonal polynomial pN .x/ for the same interval and weighting function.
This is the fundamental theorem of Gaussian quadratures, and it lets you find the
abscissas for any particular case.

Once you know the abscissas x0; : : : ; xN!1, you need to find the weights wj ,
j D 0; : : : ; N ! 1. One way to do this (not the most efficient) is to solve the set of
linear equations
2

6664

p0.x0/ : : : p0.xN!1/
p1.x0/ : : : p1.xN!1/
:::

:::
pN!1.x0/ : : : pN!1.xN!1/

3

7775

2

6664

w0
w1
:::

wN!1

3

7775
D

2

6664

R b
a W.x/p0.x/dx

0
:::
0

3

7775
(4.6.8)

Equation (4.6.8) simply solves for those weights such that the quadrature (4.6.1)
gives the correct answer for the integral of the first N orthogonal polynomials. Note
that the zeros on the right-hand side of (4.6.8) appear because p1.x/; : : : ; pN!1.x/
are all orthogonal to p0.x/, which is a constant. It can be shown that, with those
weights, the integral of the next N ! 1 polynomials is also exact, so that the quadra-
ture is exact for all polynomials of degree 2N ! 1 or less. Another way to evaluate
the weights (though one whose proof is beyond our scope) is by the formula

wj D
hpN!1jpN!1i

pN!1.xj /p0N .xj /
(4.6.9)

where p0N .xj / is the derivative of the orthogonal polynomial at its zero xj .
The computation of Gaussian quadrature rules thus involves two distinct phases:

(i) the generation of the orthogonal polynomials p0; : : : ; pN , i.e., the computation of
the coefficients aj , bj in (4.6.6), and (ii) the determination of the zeros of pN .x/, and
the computation of the associated weights. For the case of the “classical” orthogonal
polynomials, the coefficients aj and bj are explicitly known (equations 4.6.10 –
4.6.14 below) and phase (i) can be omitted. However, if you are confronted with a
“nonclassical” weight function W.x/, and you don’t know the coefficients aj and
bj , the construction of the associated set of orthogonal polynomials is not trivial. We
discuss it at the end of this section.

4.6.1 Computation of the Abscissas and Weights
This task can range from easy to difficult, depending on how much you already

know about your weight function and its associated polynomials. In the case of
classical, well-studied, orthogonal polynomials, practically everything is known, in-
cluding good approximations for their zeros. These can be used as starting guesses,
enabling Newton’s method (to be discussed in !9.4) to converge very rapidly. New-
ton’s method requires the derivative p0N .x/, which is evaluated by standard relations
in terms of pN and pN!1. The weights are then conveniently evaluated by equation

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 183 — #205 ✐
✐

✐ ✐

4.6 Gaussian Quadratures and Orthogonal Polynomials 183

(4.6.9). For the following named cases, this direct root finding is faster, by a factor
of 3 to 5, than any other method.

Here are the weight functions, intervals, and recurrence relations that generate
the most commonly used orthogonal polynomials and their corresponding Gaussian
quadrature formulas.

Gauss-Legendre:
W.x/ D 1 ! 1 < x < 1

.j C 1/PjC1 D .2j C 1/xPj ! jPj!1
(4.6.10)

Gauss-Chebyshev:

W.x/ D .1 ! x2/!1=2 ! 1 < x < 1
TjC1 D 2xTj ! Tj!1

(4.6.11)

Gauss-Laguerre:

W.x/ D x˛e!x 0 < x <1
.j C 1/L˛jC1 D .!x C 2j C ˛ C 1/L˛j ! .j C ˛/L˛j!1

(4.6.12)

Gauss-Hermite:
W.x/ D e!x2 !1 < x <1

HjC1 D 2xHj ! 2jHj!1
(4.6.13)

Gauss-Jacobi:

W.x/ D .1 ! x/˛.1C x/ˇ ! 1 < x < 1
cjP

.˛;ˇ/
jC1 D .dj C ejx/P

.˛;ˇ/
j ! fjP .˛;ˇ/j!1

(4.6.14)

where the coefficients cj ; dj ; ej , and fj are given by

cj D 2.j C 1/.j C ˛ C ˇ C 1/.2j C ˛ C ˇ/
dj D .2j C ˛ C ˇ C 1/.˛2 ! ˇ2/
ej D .2j C ˛ C ˇ/.2j C ˛ C ˇ C 1/.2j C ˛ C ˇ C 2/
fj D 2.j C ˛/.j C ˇ/.2j C ˛ C ˇ C 2/

(4.6.15)

We now give individual routines that calculate the abscissas and weights for
these cases. First comes the most common set of abscissas and weights, those of
Gauss-Legendre. The routine, due to G.B. Rybicki, uses equation (4.6.9) in the
special form for the Gauss-Legendre case,

wj D
2

.1 ! x2j /ŒP 0N .xj /!2
(4.6.16)

The routine also scales the range of integration from .x1; x2/ to .!1; 1/, and provides
abscissas xj and weights wj for the Gaussian formula

Z x2

x1

f .x/dx D
N!1X

jD0
wjf .xj / (4.6.17)

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 184 — #206 ✐
✐

✐ ✐

184 Chapter 4. Integration of Functions

void gauleg(const Doub x1, const Doub x2, VecDoub_O &x, VecDoub_O &w)gauss wgts.h
Given the lower and upper limits of integration x1 and x2, this routine returns arrays x[0..n-1]
and w[0..n-1] of length n, containing the abscissas and weights of the Gauss-Legendre n-point
quadrature formula.
{

const Doub EPS=1.0e-14; EPS is the relative precision.
Doub z1,z,xm,xl,pp,p3,p2,p1;
Int n=x.size();
Int m=(n+1)/2; The roots are symmetric in the interval, so

we only have to find half of them.xm=0.5*(x2+x1);
xl=0.5*(x2-x1);
for (Int i=0;i<m;i++) { Loop over the desired roots.

z=cos(3.141592654*(i+0.75)/(n+0.5));
Starting with this approximation to the ith root, we enter the main loop of refinement
by Newton’s method.
do {

p1=1.0;
p2=0.0;
for (Int j=0;j<n;j++) { Loop up the recurrence relation to get the

Legendre polynomial evaluated at z.p3=p2;
p2=p1;
p1=((2.0*j+1.0)*z*p2-j*p3)/(j+1);

}
p1 is now the desired Legendre polynomial. We next compute pp, its derivative,
by a standard relation involving also p2, the polynomial of one lower order.
pp=n*(z*p1-p2)/(z*z-1.0);
z1=z;
z=z1-p1/pp; Newton’s method.

} while (abs(z-z1) > EPS);
x[i]=xm-xl*z; Scale the root to the desired interval,
x[n-1-i]=xm+xl*z; and put in its symmetric counterpart.
w[i]=2.0*xl/((1.0-z*z)*pp*pp); Compute the weight
w[n-1-i]=w[i]; and its symmetric counterpart.

}
}

Next we give three routines that use initial approximations for the roots given
by Stroud and Secrest [2]. The first is for Gauss-Laguerre abscissas and weights, to
be used with the integration formula

Z 1

0

x˛e!xf .x/dx D
N!1X

jD0
wjf .xj / (4.6.18)

void gaulag(VecDoub_O &x, VecDoub_O &w, const Doub alf)gauss wgts.h
Given alf, the parameter ˛ of the Laguerre polynomials, this routine returns arrays x[0..n-1]
and w[0..n-1] containing the abscissas and weights of the n-point Gauss-Laguerre quadrature
formula. The smallest abscissa is returned in x[0], the largest in x[n-1].
{

const Int MAXIT=10;
const Doub EPS=1.0e-14; EPS is the relative precision.
Int i,its,j;
Doub ai,p1,p2,p3,pp,z,z1;
Int n=x.size();
for (i=0;i<n;i++) { Loop over the desired roots.

if (i == 0) { Initial guess for the smallest root.
z=(1.0+alf)*(3.0+0.92*alf)/(1.0+2.4*n+1.8*alf);

} else if (i == 1) { Initial guess for the second root.
z += (15.0+6.25*alf)/(1.0+0.9*alf+2.5*n);

} else { Initial guess for the other roots.
ai=i-1;

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 185 — #207 ✐
✐

✐ ✐

4.6 Gaussian Quadratures and Orthogonal Polynomials 185

z += ((1.0+2.55*ai)/(1.9*ai)+1.26*ai*alf/
(1.0+3.5*ai))*(z-x[i-2])/(1.0+0.3*alf);

}
for (its=0;its<MAXIT;its++) { Refinement by Newton’s method.

p1=1.0;
p2=0.0;
for (j=0;j<n;j++) { Loop up the recurrence relation to get the

Laguerre polynomial evaluated at z.p3=p2;
p2=p1;
p1=((2*j+1+alf-z)*p2-(j+alf)*p3)/(j+1);

}
p1 is now the desired Laguerre polynomial. We next compute pp, its derivative,
by a standard relation involving also p2, the polynomial of one lower order.
pp=(n*p1-(n+alf)*p2)/z;
z1=z;
z=z1-p1/pp; Newton’s formula.
if (abs(z-z1) <= EPS) break;

}
if (its >= MAXIT) throw("too many iterations in gaulag");
x[i]=z; Store the root and the weight.
w[i] = -exp(gammln(alf+n)-gammln(Doub(n)))/(pp*n*p2);

}
}

Next is a routine for Gauss-Hermite abscissas and weights. If we use the “stan-
dard” normalization of these functions, as given in equation (4.6.13), we find that
the computations overflow for large N because of various factorials that occur. We
can avoid this by using instead the orthonormal set of polynomials zHj . They are
generated by the recurrence

zH!1 D 0; zH0 D
1

!1=4
; zHjC1 D x

r
2

j C 1
zHj !

r
j

j C 1
zHj!1 (4.6.19)

The formula for the weights becomes

wj D
2

Œ zH 0N .xj /"2
(4.6.20)

while the formula for the derivative with this normalization is

zH 0j D
p
2j zHj!1 (4.6.21)

The abscissas and weights returned by gauher are used with the integration formula

Z 1

!1
e!x

2
f .x/dx D

N!1X

jD0
wjf .xj / (4.6.22)

void gauher(VecDoub_O &x, VecDoub_O &w) gauss wgts.h
This routine returns arrays x[0..n-1] and w[0..n-1] containing the abscissas and weights of
the n-point Gauss-Hermite quadrature formula. The largest abscissa is returned in x[0], the
most negative in x[n-1].
{

const Doub EPS=1.0e-14,PIM4=0.7511255444649425;
Relative precision and 1=!1=4.
const Int MAXIT=10; Maximum iterations.
Int i,its,j,m;

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 186 — #208 ✐
✐

✐ ✐

186 Chapter 4. Integration of Functions

Doub p1,p2,p3,pp,z,z1;
Int n=x.size();
m=(n+1)/2;
The roots are symmetric about the origin, so we have to find only half of them.
for (i=0;i<m;i++) { Loop over the desired roots.

if (i == 0) { Initial guess for the largest root.
z=sqrt(Doub(2*n+1))-1.85575*pow(Doub(2*n+1),-0.16667);

} else if (i == 1) { Initial guess for the second largest root.
z -= 1.14*pow(Doub(n),0.426)/z;

} else if (i == 2) { Initial guess for the third largest root.
z=1.86*z-0.86*x[0];

} else if (i == 3) { Initial guess for the fourth largest root.
z=1.91*z-0.91*x[1];

} else { Initial guess for the other roots.
z=2.0*z-x[i-2];

}
for (its=0;its<MAXIT;its++) { Refinement by Newton’s method.

p1=PIM4;
p2=0.0;
for (j=0;j<n;j++) { Loop up the recurrence relation to get

the Hermite polynomial evaluated at
z.

p3=p2;
p2=p1;
p1=z*sqrt(2.0/(j+1))*p2-sqrt(Doub(j)/(j+1))*p3;

}
p1 is now the desired Hermite polynomial. We next compute pp, its derivative, by
the relation (4.6.21) using p2, the polynomial of one lower order.
pp=sqrt(Doub(2*n))*p2;
z1=z;
z=z1-p1/pp; Newton’s formula.
if (abs(z-z1) <= EPS) break;

}
if (its >= MAXIT) throw("too many iterations in gauher");
x[i]=z; Store the root
x[n-1-i] = -z; and its symmetric counterpart.
w[i]=2.0/(pp*pp); Compute the weight
w[n-1-i]=w[i]; and its symmetric counterpart.

}
}

Finally, here is a routine for Gauss-Jacobi abscissas and weights, which imple-
ment the integration formula

Z 1

!1
.1 ! x/˛.1C x/ˇf .x/dx D

N!1X

jD0
wjf .xj / (4.6.23)

void gaujac(VecDoub_O &x, VecDoub_O &w, const Doub alf, const Doub bet)gauss wgts.h
Given alf and bet, the parameters ˛ and ˇ of the Jacobi polynomials, this routine returns
arrays x[0..n-1] and w[0..n-1] containing the abscissas and weights of the n-point Gauss-
Jacobi quadrature formula. The largest abscissa is returned in x[0], the smallest in x[n-1].

{
const Int MAXIT=10;
const Doub EPS=1.0e-14; EPS is the relative precision.
Int i,its,j;
Doub alfbet,an,bn,r1,r2,r3;
Doub a,b,c,p1,p2,p3,pp,temp,z,z1;
Int n=x.size();
for (i=0;i<n;i++) { Loop over the desired roots.

if (i == 0) { Initial guess for the largest root.
an=alf/n;

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 187 — #209 ✐
✐

✐ ✐

4.6 Gaussian Quadratures and Orthogonal Polynomials 187

bn=bet/n;
r1=(1.0+alf)*(2.78/(4.0+n*n)+0.768*an/n);
r2=1.0+1.48*an+0.96*bn+0.452*an*an+0.83*an*bn;
z=1.0-r1/r2;

} else if (i == 1) { Initial guess for the second largest root.
r1=(4.1+alf)/((1.0+alf)*(1.0+0.156*alf));
r2=1.0+0.06*(n-8.0)*(1.0+0.12*alf)/n;
r3=1.0+0.012*bet*(1.0+0.25*abs(alf))/n;
z -= (1.0-z)*r1*r2*r3;

} else if (i == 2) { Initial guess for the third largest root.
r1=(1.67+0.28*alf)/(1.0+0.37*alf);
r2=1.0+0.22*(n-8.0)/n;
r3=1.0+8.0*bet/((6.28+bet)*n*n);
z -= (x[0]-z)*r1*r2*r3;

} else if (i == n-2) { Initial guess for the second smallest root.
r1=(1.0+0.235*bet)/(0.766+0.119*bet);
r2=1.0/(1.0+0.639*(n-4.0)/(1.0+0.71*(n-4.0)));
r3=1.0/(1.0+20.0*alf/((7.5+alf)*n*n));
z += (z-x[n-4])*r1*r2*r3;

} else if (i == n-1) { Initial guess for the smallest root.
r1=(1.0+0.37*bet)/(1.67+0.28*bet);
r2=1.0/(1.0+0.22*(n-8.0)/n);
r3=1.0/(1.0+8.0*alf/((6.28+alf)*n*n));
z += (z-x[n-3])*r1*r2*r3;

} else { Initial guess for the other roots.
z=3.0*x[i-1]-3.0*x[i-2]+x[i-3];

}
alfbet=alf+bet;
for (its=1;its<=MAXIT;its++) { Refinement by Newton’s method.

temp=2.0+alfbet; Start the recurrence with P0 and P1 to avoid
a division by zero when ˛ C ˇ D 0 or
!1.

p1=(alf-bet+temp*z)/2.0;
p2=1.0;
for (j=2;j<=n;j++) { Loop up the recurrence relation to get the

Jacobi polynomial evaluated at z.p3=p2;
p2=p1;
temp=2*j+alfbet;
a=2*j*(j+alfbet)*(temp-2.0);
b=(temp-1.0)*(alf*alf-bet*bet+temp*(temp-2.0)*z);
c=2.0*(j-1+alf)*(j-1+bet)*temp;
p1=(b*p2-c*p3)/a;

}
pp=(n*(alf-bet-temp*z)*p1+2.0*(n+alf)*(n+bet)*p2)/(temp*(1.0-z*z));
p1 is now the desired Jacobi polynomial. We next compute pp, its derivative, by
a standard relation involving also p2, the polynomial of one lower order.
z1=z;
z=z1-p1/pp; Newton’s formula.
if (abs(z-z1) <= EPS) break;

}
if (its > MAXIT) throw("too many iterations in gaujac");
x[i]=z; Store the root and the weight.
w[i]=exp(gammln(alf+n)+gammln(bet+n)-gammln(n+1.0)-

gammln(n+alfbet+1.0))*temp*pow(2.0,alfbet)/(pp*p2);
}

}

Legendre polynomials are special cases of Jacobi polynomials with ˛ D ˇ D 0,
but it is worth having the separate routine for them, gauleg, given above. Chebyshev
polynomials correspond to ˛ D ˇ D !1=2 (see !5.8). They have analytic abscissas
and weights:

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 188 — #210 ✐
✐

✐ ✐

188 Chapter 4. Integration of Functions

xj D cos

!.j C 1

2 /

N

!

wj D
!

N

(4.6.24)

4.6.2 Case of Known Recurrences
Turn now to the case where you do not know good initial guesses for the zeros of your or-

thogonal polynomials, but you do have available the coefficients aj and bj that generate them.
As we have seen, the zeros of pN .x/ are the abscissas for the N -point Gaussian quadrature
formula. The most useful computational formula for the weights is equation (4.6.9) above,
since the derivative p0N can be efficiently computed by the derivative of (4.6.6) in the general
case, or by special relations for the classical polynomials. Note that (4.6.9) is valid as written
only for monic polynomials; for other normalizations, there is an extra factor of "N ="N!1,
where "N is the coefficient of xN in pN .

Except in those special cases already discussed, the best way to find the abscissas is not
to use a root-finding method like Newton’s method on pN .x/. Rather, it is generally faster
to use the Golub-Welsch [3] algorithm, which is based on a result of Wilf [4]. This algorithm
notes that if you bring the term xpj to the left-hand side of (4.6.6) and the term pjC1 to the
right-hand side, the recurrence relation can be written in matrix form as

x

2

66664

p0
p1
:::

pN!2
pN!1

3

77775
D

2

66664

a0 1
b1 a1 1

:::
:::

bN!2 aN!2 1
bN!1 aN!1

3

77775
!

2

66664

p0
p1
:::

pN!2
pN!1

3

77775
C

2

66664

0
0
:::
0
pN

3

77775
(4.6.25)

or
xp D T ! pC pN eN!1 (4.6.26)

Here T is a tridiagonal matrix; p is a column vector of p0; p1; : : : ; pN!1; and eN!1 is a
unit vector with a 1 in the .N " 1/st (last) position and zeros elsewhere. The matrix T can be
symmetrized by a diagonal similarity transformation D to give

J D DTD!1 D

2

666664

a0
p
b1p

b1 a1
p
b2

:::
:::p
bN!2 aN!2

p
bN!1p

bN!1 aN!1

3

777775
(4.6.27)

The matrix J is called the Jacobi matrix (not to be confused with other matrices named after
Jacobi that arise in completely different problems!). Now we see from (4.6.26) that pN .xj / D
0 is equivalent to xj being an eigenvalue of T . Since eigenvalues are preserved by a similarity
transformation, xj is an eigenvalue of the symmetric tridiagonal matrix J . Moreover, Wilf [4]
shows that if vj is the eigenvector corresponding to the eigenvalue xj , normalized so that
v ! v D 1, then

wj D #0v2j;0 (4.6.28)

where

#0 D
Z b

a
W.x/ dx (4.6.29)

and where vj;0 is the zeroth component of v . As we shall see in Chapter 11, finding all
eigenvalues and eigenvectors of a symmetric tridiagonal matrix is a relatively efficient and
well-conditioned procedure. We accordingly give a routine, gaucof, for finding the abscissas
and weights, given the coefficients aj and bj . Remember that if you know the recurrence
relation for orthogonal polynomials that are not normalized to be monic, you can easily convert
it to monic form by means of the quantities "j .

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 189 — #211 ✐
✐

✐ ✐

4.6 Gaussian Quadratures and Orthogonal Polynomials 189

void gaucof(VecDoub_IO &a, VecDoub_IO &b, const Doub amu0, VecDoub_O &x, gauss wgts2.h
VecDoub_O &w)

Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi matrix.
On input, a[0..n-1] and b[0..n-1] are the coefficients of the recurrence relation for the set of

monic orthogonal polynomials. The quantity !0 !
R b
a W.x/dx is input as amu0. The abscissas

x[0..n-1] are returned in descending order, with the corresponding weights in w[0..n-1]. The
arrays a and b are modified. Execution can be speeded up by modifying tqli and eigsrt to
compute only the zeroth component of each eigenvector.
{

Int n=a.size();
for (Int i=0;i<n;i++)

if (i != 0) b[i]=sqrt(b[i]); Set up superdiagonal of Jacobi matrix.
Symmeig sym(a,b);
for (Int i=0;i<n;i++) {

x[i]=sym.d[i];
w[i]=amu0*sym.z[0][i]*sym.z[0][i]; Equation (4.6.28).

}
}

4.6.3 Orthogonal Polynomials with Nonclassical Weights
What do you do if your weight function is not one of the classical ones dealt with above

and you do not know the aj ’s and bj ’s of the recurrence relation (4.6.6) to use in gaucof?
Obviously, you need a method of finding the aj ’s and bj ’s.

The best general method is the Stieltjes procedure: First compute a0 from (4.6.7), and
then p1.x/ from (4.6.6). Knowing p0 and p1, compute a1 and b1 from (4.6.7), and so on.
But how are we to compute the inner products in (4.6.7)?

The textbook approach is to represent each pj .x/ explicitly as a polynomial in x and to
compute the inner products by multiplying out term by term. This will be feasible if we know
the first 2N moments of the weight function,

!j D
Z b

a
xjW.x/dx j D 0; 1; : : : ; 2N ! 1 (4.6.30)

However, the solution of the resulting set of algebraic equations for the coefficients aj and bj
in terms of the moments !j is in general extremely ill-conditioned. Even in double precision,
it is not unusual to lose all accuracy by the time N D 12. We thus reject any procedure based
on the moments (4.6.30).

Gautschi [5] showed that the Stieltjes procedure is feasible if the inner products in (4.6.7)
are computed directly by numerical quadrature. This is only practicable if you can find a
quadrature scheme that can compute the integrals to high accuracy despite the singularities in
the weight function W.x/. Gautschi advocates the Fejér quadrature scheme [5] as a general-
purpose scheme for handling singularities when no better method is available. We have per-
sonally had much better experience with the transformation methods of "4.5, particularly the
DE rule and its variants.

We use a structure Stiel that implements the Stieltjes procedure. Its member function
get_weights generates the coefficients aj and bj of the recurrence relation, and then calls
gaucof to find the abscissas and weights. You can easily modify it to return the aj ’s and bj ’s
if you want them as well. Internally, the routine calls the function quad to do the integrals in
(4.6.7). For a finite range of integration, the routine uses the straight DE rule. This is effected
by invoking the constructor with five parameters: the number of quadrature abscissas (and
weights) desired, the lower and upper limits of integration, the parameter hmax to be passed
to the DE rule (see "4.5), and the weight function W.x/. For an infinite range of integration,
the routine invokes the trapezoidal rule with one of the coordinate transformations discussed
in "4.5. For this case you invoke the constructor that has no hmax, but takes the mapping
function x D x.t/ and its derivative dx=dt in addition toW.x/. Now the range of integration
you input is the finite range of the trapezoidal rule.

This will all be clearer with some examples. Consider first the weight function

W.x/ D ! log x (4.6.31)

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 190 — #212 ✐
✐

✐ ✐

190 Chapter 4. Integration of Functions

on the finite interval .0; 1/. Normally, for the finite range case (DE rule), the weight function
must be coded as a function of two variables, W.x; ı/, where ı is the distance from the end-
point singularity. Since the logarithmic singularity at the endpoint x D 0 is “mild,” there is no
need to use the argument ı in coding the function:

Doub wt(const Doub x, const Doub del)
{

return -log(x);
}

A value of hmax D 3:7 will give full double precision, as discussed in !4.5, so the calling code
looks like this:

n= ...
VecDoub x(n),w(n);
Stiel s(n,0.0,1.0,3.7,wt);
s.get_weights(x,w);

For the infinite range case, in addition to the weight function W.x/, you have to supply
two functions for the coordinate transformation you want to use (see equation 4.5.14). We’ll
denote the mapping x D x.t/ by fx and dx=dt by fdxdt, but you can use any names you
like. All these functions are coded as functions of one variable.

Here is an example of the user-supplied functions for the weight function

W.x/ D x1=2

ex C 1 (4.6.32)

on the interval .0;1/. Gaussian quadrature based on W.x/ has been proposed for evaluating
generalized Fermi-Dirac integrals [6] (cf. !4.5). We use the “mixed” DE rule of equation
(4.5.14), x D et!e!t . As is typical with the Stieltjes procedure, you get abscissas and weights
within about one or two significant digits of machine accuracy for N of a few dozen.

Doub wt(const Doub x)
{

Doub s=exp(-x);
return sqrt(x)*s/(1.0+s);

}

Doub fx(const Doub t)
{

return exp(t-exp(-t));
}

Doub fdxdt(const Doub t)
{

Doub s=exp(-t);
return exp(t-s)*(1.0+s);

}
...

Stiel ss(n,-5.5,6.5,wt,fx,fdxdt);
ss.get_weights(x,w);

The listing of the Stiel object, and discussion of some of the C++ intricacies of its
coding, are in a Webnote [9].

Two other algorithms exist [7,8] for finding abscissas and weights for Gaussian quadra-
tures. The first starts similarly to the Stieltjes procedure by representing the inner product
integrals in equation (4.6.7) as discrete quadratures using some quadrature rule. This defines a
matrix whose elements are formed from the abscissas and weights in your chosen quadrature
rule, together with the given weight function. Then an algorithm due to Lanczos is used to
transform this to a matrix that is essentially the Jacobi matrix (4.6.27).

The second algorithm is based on the idea of modified moments. Instead of using powers
of x as a set of basis functions to represent the pj ’s, one uses some other known set of orthog-
onal polynomials "j .x/, say. Then the inner products in equation (4.6.7) will be expressible

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 191 — #213 ✐
✐

✐ ✐

4.6 Gaussian Quadratures and Orthogonal Polynomials 191

in terms of the modified moments

!j D
Z b

a
"j .x/W.x/dx j D 0; 1; : : : ; 2N ! 1 (4.6.33)

The modified Chebyshev algorithm (due to Sack and Donovan [10] and later improved by
Wheeler [11]) is an efficient algorithm that generates the desired aj ’s and bj ’s from the modi-
fied moments. Roughly speaking, the improved stability occurs because the polynomial basis
“samples” the interval .a; b/ better than the power basis when the inner product integrals are
evaluated, especially if its weight function resembles W.x/. The algorithm requires that the
modified moments (4.6.33) be accurately computed. Sometimes there is a closed form, for
example, for the important case of the log x weight function [12,8]. Otherwise you have to
use a suitable discretization procedure to compute the modified moments [7,8], just as we did
for the inner products in the Stieltjes procedure. There is some art in choosing the auxil-
iary polynomials "j , and in practice it is not always possible to find a set that removes the
ill-conditioning.

Gautschi [8] has given an extensive suite of routines that handle all three of the algo-
rithms we have described, together with many other aspects of orthogonal polynomials and
Gaussian quadrature. However, for most straightforward applications, you should find Stiel
together with a suitable DE rule quadrature more than adequate.

4.6.4 Extensions of Gaussian Quadrature
There are many different ways in which the ideas of Gaussian quadrature have

been extended. One important extension is the case of preassigned nodes: Some
points are required to be included in the set of abscissas, and the problem is to choose
the weights and the remaining abscissas to maximize the degree of exactness of the
the quadrature rule. The most common cases are Gauss-Radau quadrature, where
one of the nodes is an endpoint of the interval, either a or b, and Gauss-Lobatto
quadrature, where both a and b are nodes. Golub [13,8] has given an algorithm similar
to gaucof for these cases.

An N -point Gauss-Radau rule has the form of equation (4.6.1), where x1 is chosen to
be either a or b (x1 must be finite). You can construct the rule from the coefficients for
the corresponding ordinary N -point Gaussian quadrature. Simply set up the Jacobi matrix
equation (4.6.27), but modify the entry aN!1:

a0N!1 D x1 ! bN!1
pN!2.x1/
pN!1.x1/

(4.6.34)

Here is the routine:

void radau(VecDoub_IO &a, VecDoub_IO &b, const Doub amu0, const Doub x1, gauss wgts2.h
VecDoub_O &x, VecDoub_O &w)

Computes the abscissas and weights for a Gauss-Radau quadrature formula. On input, a[0..n-1]
and b[0..n-1] are the coefficients of the recurrence relation for the set of monic orthogo-
nal polynomials corresponding to the weight function. (b[0] is not referenced.) The quantity

!0 "
R b
a W.x/dx is input as amu0. x1 is input as either endpoint of the interval. The abscissas

x[0..n-1] are returned in descending order, with the corresponding weights in w[0..n-1]. The
arrays a and b are modified.
{

Int n=a.size();
if (n == 1) {

x[0]=x1;
w[0]=amu0;

} else { Compute pN!1 and pN!2 by recurrence.
Doub p=x1-a[0];

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 192 — #214 ✐
✐

✐ ✐

192 Chapter 4. Integration of Functions

Doub pm1=1.0;
Doub p1=p;
for (Int i=1;i<n-1;i++) {

p=(x1-a[i])*p1-b[i]*pm1;
pm1=p1;
p1=p;

}
a[n-1]=x1-b[n-1]*pm1/p; Equation (4.6.34).
gaucof(a,b,amu0,x,w);

}
}

AnN -point Gauss-Lobatto rule has the form of equation (4.6.1) where x1 D a, xN D b
(both finite). This time you modify the entries aN!1 and bN!1 in equation (4.6.27) by solving
two linear equations:

!
pN!1.x1/ pN!2.x1/
pN!1.xN / pN!2.xN /

" !
a0N!1
b0N!1

"
D
!
x1pN!1.x1/
xNpN!1.xN /

"
(4.6.35)

void lobatto(VecDoub_IO &a, VecDoub_IO &b, const Doub amu0, const Doub x1,gauss wgts2.h
const Doub xn, VecDoub_O &x, VecDoub_O &w)

Computes the abscissas and weights for a Gauss-Lobatto quadrature formula. On input, the
vectors a[0..n-1] and b[0..n-1] are the coefficients of the recurrence relation for the set of
monic orthogonal polynomials corresponding to the weight function. (b[0] is not referenced.)

The quantity !0 "
R b
a W.x/dx is input as amu0. x1 amd xn are input as the endpoints of

the interval. The abscissas x[0..n-1] are returned in descending order, with the corresponding
weights in w[0..n-1]. The arrays a and b are modified.
{

Doub det,pl,pr,p1l,p1r,pm1l,pm1r;
Int n=a.size();
if (n <= 1)

throw("n must be bigger than 1 in lobatto");
pl=x1-a[0]; Compute pN!1 and pN!2 at x1 and xN by recur-

rence.pr=xn-a[0];
pm1l=1.0;
pm1r=1.0;
p1l=pl;
p1r=pr;
for (Int i=1;i<n-1;i++) {

pl=(x1-a[i])*p1l-b[i]*pm1l;
pr=(xn-a[i])*p1r-b[i]*pm1r;
pm1l=p1l;
pm1r=p1r;
p1l=pl;
p1r=pr;

}
det=pl*pm1r-pr*pm1l; Solve equation (4.6.35).
a[n-1]=(x1*pl*pm1r-xn*pr*pm1l)/det;
b[n-1]=(xn-x1)*pl*pr/det;
gaucof(a,b,amu0,x,w);

}

The second important extension of Gaussian quadrature is the Gauss-Kronrod
formulas. For ordinary Gaussian quadrature formulas, as N increases, the sets of
abscissas have no points in common. This means that if you compare results with
increasing N as a way of estimating the quadrature error, you cannot reuse the pre-
vious function evaluations. Kronrod [14] posed the problem of searching for optimal
sequences of rules, each of which reuses all abscissas of its predecessor. If one starts
with N D m, say, and then adds n new points, one has 2nCm free parameters: the

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 193 — #215 ✐
✐

✐ ✐

4.6 Gaussian Quadratures and Orthogonal Polynomials 193

n new abscissas and weights, and m new weights for the fixed previous abscissas.
The maximum degree of exactness one would expect to achieve would therefore be
2nCm! 1. The question is whether this maximum degree of exactness can actually
be achieved in practice, when the abscissas are required to all lie inside .a; b/. The
answer to this question is not known in general.

Kronrod showed that if you choose n D m C 1, an optimal extension can
be found for Gauss-Legendre quadrature. Patterson [15] showed how to compute
continued extensions of this kind. Sequences such as N D 10; 21; 43; 87; : : : are
popular in automatic quadrature routines [16] that attempt to integrate a function until
some specified accuracy has been achieved.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, !25.4.[1]

Stroud, A.H., and Secrest, D. 1966, Gaussian Quadrature Formulas (Englewood Cliffs, NJ:
Prentice-Hall).[2]

Golub, G.H., and Welsch, J.H. 1969, “Calculation of Gauss Quadrature Rules,” Mathematics of
Computation, vol. 23, pp. 221–230 and A1–A10.[3]

Wilf, H.S. 1962, Mathematics for the Physical Sciences (New York: Wiley), Problem 9, p. 80.[4]

Gautschi, W. 1968, “Construction of Gauss-Christoffel Quadrature Formulas,” Mathematics of
Computation, vol. 22, pp. 251–270.[5]

Sagar, R.P. 1991, “A Gaussian Quadrature for the Calculation of Generalized Fermi-Dirac Inte-
grals,” Computer Physics Communications, vol. 66, pp. 271–275.[6]

Gautschi, W. 1982, “On Generating Orthogonal Polynomials,” SIAM Journal on Scientific and
Statistical Computing, vol. 3, pp. 289–317.[7]

Gautschi, W. 1994, “ORTHPOL: A Package of Routines for Generating Orthogonal Polynomials
and Gauss-type Quadrature Rules,” ACM Transactions on Mathematical Software, vol. 20,
pp. 21–62 (Algorithm 726 available from netlib).[8]

Numerical Recipes Software 2007, “Implementation of Stiel,” Numerical Recipes Webnote No. 3,
at http://www.nr.com/webnotes?3 [9]

Sack, R.A., and Donovan, A.F. 1971/72, “An Algorithm for Gaussian Quadrature Given Modified
Moments,” Numerische Mathematik, vol. 18, pp. 465–478.[10]

Wheeler, J.C. 1974, “Modified Moments and Gaussian Quadratures,” Rocky Mountain Journal
of Mathematics, vol. 4, pp. 287–296.[11]

Gautschi, W. 1978, in Recent Advances in Numerical Analysis, C. de Boor and G.H. Golub, eds.
(New York: Academic Press), pp. 45–72.[12]

Golub, G.H. 1973, “Some Modified Matrix Eigenvalue Problems,” SIAM Review, vol. 15, pp. 318–
334.[13]

Kronrod, A.S. 1964, Doklady Akademii Nauk SSSR, vol. 154, pp. 283–286 (in Russian); trans-
lated as Soviet Physics “Doklady”.[14]

Patterson, T.N.L. 1968, “The Optimum Addition of Points to Quadrature Formulae,” Mathematics
of Computation, vol. 22, pp. 847–856 and C1–C11; 1969, op. cit., vol. 23, p. 892.[15]

Piessens, R., de Doncker-Kapenga, E., Überhuber, C., and Kahaner, D. 1983 QUADPACK, A
Subroutine Package for Automatic Integration (New York: Springer). Software at
http://www.netlib.org/quadpack.[16]

Gautschi, W. 1981, in E.B. Christoffel, P.L. Butzer and F. Fehér, eds. (Basel: Birkhäuser), pp. 72–
147.

Gautschi, W. 1990, in Orthogonal Polynomials, P. Nevai, ed. (Dordrecht: Kluwer Academic Pub-
lishers), pp. 181–216.

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 194 — #216 ✐
✐

✐ ✐

194 Chapter 4. Integration of Functions

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
!3.6.

4.7 Adaptive Quadrature
The idea behind adaptive quadrature is very simple. Suppose you have two

different numerical estimates I1 and I2 of the integral

I D
Z b

a

f .x/ dx (4.7.1)

Suppose I1 is more accurate. Use the relative difference between I1 and I2 as an
error estimate. If it is less than ", accept I1 as the answer. Otherwise divide the
interval Œa; b# into two subintervals,

I D
Z m

a

f .x/ dx C
Z b

m

f .x/ dx m D .aC b/=2 (4.7.2)

and compute the two integrals independently. For each one, compute an I1 and I2,
estimate the error, and continue subdividing if necessary. Dividing any given subin-
terval stops when its contribution to " is sufficiently small. (Obviously recursion will
be a good way to implement this algorithm.)

The most important criterion for an adaptive quadrature routine is reliability: If
you request an accuracy of 10!6, you would like to be sure that the answer is at least
that good. From a theoretical point of view, however, it is impossible to design an
adaptive quadrature routine that will work for all possible functions. The reason is
simple: A quadrature is based on the value of the integrand f .x/ at a finite set of
points. You can alter the function at all the other points in an arbitrary way without
affecting the estimate your algorithm returns, while the true value of the integral
changes unpredictably. Despite this point of principle, however, in practice good
routines are reliable for a high fraction of functions they encounter. Our favorite
routine is one proposed by Gander and Gautschi [1], which we now describe. It is
relatively simple, yet scores well on reliability and efficiency.

A key component of a good adaptive algorithm is the termination criterion. The
usual criterion

jI1 ! I2j < "jI1j (4.7.3)

is problematic. In the neighborhood of a singularity, I1 and I2 might never agree
to the requested tolerance, even if it’s not particularly small. Instead, you need to
somehow come up with an estimate of the whole integral I of equation (4.7.1). Then
you can terminate when the error in I1 is negligible compared to the whole integral:

jI1 ! I2j < "jIsj (4.7.4)

where Is is the estimate of I . Gander and Gautschi implement this test by writing

if (is + (i1-i2) == is)

which is equivalent to setting " to the machine precision. However, modern op-
timizing compilers have become too good at recognizing that this is algebraically
equivalent to

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 195 — #217 ✐
✐

✐ ✐

4.7 Adaptive Quadrature 195

if (i1-i2 == 0.0)

which might never be satisfied in floating point arithmetic. Accordingly, we imple-
ment the test with an explicit !.

The other problem you need to take care of is when an interval gets subdivided
so small that it contains no interior machine-representable point. You then need to
terminate the recursion and alert the user that the full accuracy might not have been
attained. In the case where the points in an interval are supposed to be fa;m D
.aC b/=2; bg, you can test for m ! a or b ! m.

The lowest order integration method in the Gander-Gautschi method is the four-
point Gauss-Lobatto quadrature (cf. "4.6)

Z 1

!1
f .x/ dx D 1

6

h
f ."1/C f .1/

i
C 5

6

h
f
!
" 1p

5

"
C f

!
1p
5

"i
(4.7.5)

This formula, which is exact for polynomials of degree 5, is used to compute I2. To
reuse these function evaluations in computing I1, they find the seven-point Kronrod
extension,

Z 1

!1
f .x/ dx D 11

210

h
f ."1/C f .1/

i
C 72

245

h
f
!
"
q
2
3

"
C f

!q
2
3

"i

C 125
294

h
f
!
" 1p

5

"
C f

!
1p
5

"i
C 16

35f .0/

(4.7.6)

whose degree of exactness is nine. The formulas (4.7.5) and (4.7.6) get scaled from
Œ"1; 1# to an arbitrary subinterval Œa; b#.

For Is , Gander and Gautschi find a 13-point Kronrod extension of equation
(4.7.6), which lets them reuse the previous function evaluations. The formula is
coded into the routine below. You can think of this initial 13-point evaluation as
a kind of Monte Carlo sampling to get an idea of the order of magnitude of the
integral. But if the integrand is smooth, this initial evaluation will itself be quite
accurate already. The routine below takes advantage of this.

Note that to reuse the four function evaluations in (4.7.5) in the seven-point
formula (4.7.6), you can’t simply bisect intervals. But dividing into six subintervals
works (there are six intervals between seven points).

To use the routine, you need to initialize an Adapt object with your required
tolerance,

Adapt s(1.0e-6);

and then call the integrate function:

ans=s.integrate(func,a,b);

You should check that the desired tolerance could be met:

if (s.out_of_tolerance)
cout << "Required tolerance may not be met" << endl;

The smallest allowed tolerance is 10 times the machine precision. If you enter a
smaller tolerance, it gets reset internally. (The routine will work using the machine
precision itself, but then it usually just takes lots of function evaluations for little
additional benefit.)

The implementation of the Adapt object is given in a Webnote [2].
Adaptive quadrature is no panacea. The above routine has no special machinery

to deal with singularities other than to refine the neighboring intervals. By using

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 196 — #218 ✐
✐

✐ ✐

196 Chapter 4. Integration of Functions

suitable schemes for I1 and I2, one can customize an adaptive routine to deal with a
particular kind of singularity (cf. [3]).

CITED REFERENCES AND FURTHER READING:

Gander, W., and Gautschi, W. 2000, “Adaptive Quadrature — Revisited,” BIT vol. 40, pp. 84–
101.[1]

Numerical Recipes Software 2007, “Implementation of Adapt,” Numerical Recipes Webnote
No. 4, at http://www.nr.com/webnotes?4 [2]

Piessens, R., de Doncker-Kapenga, E., Überhuber, C., and Kahaner, D. 1983 QUADPACK, A
Subroutine Package for Automatic Integration (New York: Springer). Software at
http://www.netlib.org/quadpack.[3]

Davis, P.J., and Rabinowitz, P. 1984, Methods of Numerical Integration, 2nd ed., (Orlando, FL:
Academic Press), Chapter 6.

4.8 Multidimensional Integrals

Integrals of functions of several variables, over regions with dimension greater
than one, are not easy. There are two reasons for this. First, the number of function
evaluations needed to sample an N -dimensional space increases as the N th power
of the number needed to do a one-dimensional integral. If you need 30 function
evaluations to do a one-dimensional integral crudely, then you will likely need on
the order of 30000 evaluations to reach the same crude level for a three-dimensional
integral. Second, the region of integration in N -dimensional space is defined by
an N ! 1 dimensional boundary that can itself be terribly complicated: It need not
be convex or simply connected, for example. By contrast, the boundary of a one-
dimensional integral consists of two numbers, its upper and lower limits.

The first question to be asked, when faced with a multidimensional integral, is,
can it be reduced analytically to a lower dimensionality? For example, so-called iter-
ated integrals of a function of one variable f .t/ can be reduced to one-dimensional
integrals by the formula

Z x

0

dtn

Z tn

0

dtn!1 " " "
Z t3

0

dt2

Z t2

0

f .t1/ dt1 D
1

.n ! 1/Š

Z x

0

.x ! t /n!1f .t/ dt
(4.8.1)

Alternatively, the function may have some special symmetry in the way it depends on
its independent variables. If the boundary also has this symmetry, then the dimension
can be reduced. In three dimensions, for example, the integration of a spherically
symmetric function over a spherical region reduces, in polar coordinates, to a one-
dimensional integral.

The next questions to be asked will guide your choice between two entirely
different approaches to doing the problem. The questions are: Is the shape of the
boundary of the region of integration simple or complicated? Inside the region, is
the integrand smooth and simple, or complicated, or locally strongly peaked? Does
the problem require high accuracy, or does it require an answer accurate only to a
percent, or a few percent?

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 197 — #219 ✐
✐

✐ ✐

4.8 Multidimensional Integrals 197

If your answers are that the boundary is complicated, the integrand is not strongly
peaked in very small regions, and relatively low accuracy is tolerable, then your prob-
lem is a good candidate for Monte Carlo integration. This method is very straight-
forward to program, in its cruder forms. One needs only to know a region with
simple boundaries that includes the complicated region of integration, plus a method
of determining whether a random point is inside or outside the region of integration.
Monte Carlo integration evaluates the function at a random sample of points and es-
timates its integral based on that random sample. We will discuss it in more detail,
and with more sophistication, in Chapter 7.

If the boundary is simple, and the function is very smooth, then the remaining
approaches, breaking up the problem into repeated one-dimensional integrals, or
multidimensional Gaussian quadratures, will be effective and relatively fast [1]. If
you require high accuracy, these approaches are in any case the only ones available
to you, since Monte Carlo methods are by nature asymptotically slow to converge.

For low accuracy, use repeated one-dimensional integration or multidimen-
sional Gaussian quadratures when the integrand is slowly varying and smooth in the
region of integration, Monte Carlo when the integrand is oscillatory or discontinuous
but not strongly peaked in small regions.

If the integrand is strongly peaked in small regions, and you know where those
regions are, break the integral up into several regions so that the integrand is smooth
in each, and do each separately. If you don’t know where the strongly peaked regions
are, you might as well (at the level of sophistication of this book) quit: It is hopeless
to expect an integration routine to search out unknown pockets of large contribution
in a huge N -dimensional space. (But see !7.9.)

If, on the basis of the above guidelines, you decide to pursue the repeated one-
dimensional integration approach, here is how it works. For definiteness, we will
consider the case of a three-dimensional integral in x; y; z-space. Two dimensions,
or more than three dimensions, are entirely analogous.

The first step is to specify the region of integration by (i) its lower and upper
limits in x, which we will denote x1 and x2; (ii) its lower and upper limits in y at
a specified value of x, denoted y1.x/ and y2.x/; and (iii) its lower and upper limits
in z at specified x and y, denoted z1.x; y/ and z2.x; y/. In other words, find the
numbers x1 and x2, and the functions y1.x/; y2.x/; z1.x; y/, and z2.x; y/ such that

I !
•

dx dy dz f .x; y; z/

D
Z x2

x1

dx

Z y2.x/

y1.x/

dy

Z z2.x;y/

z1.x;y/

dz f .x; y; z/

(4.8.2)

For example, a two-dimensional integral over a circle of radius one centered on the
origin becomes

Z 1

!1
dx

Z p1!x2

!
p
1!x2

dy f .x; y/ (4.8.3)

Now we can define a function G.x; y/ that does the innermost integral,

G.x; y/ !
Z z2.x;y/

z1.x;y/

f .x; y; z/ dz (4.8.4)

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 198 — #220 ✐
✐

✐ ✐

198 Chapter 4. Integration of Functions

inner integration

y

x

ou
te

r i
nt

eg
ra

tio
n

Figure 4.8.1. Function evaluations for a two-dimensional integral over an irregular region, shown
schematically. The outer integration routine, in y, requests values of the inner, x, integral at locations
along the y-axis of its own choosing. The inner integration routine then evaluates the function at x loca-
tions suitable to it. This is more accurate in general than, e.g., evaluating the function on a Cartesian mesh
of points.

and a function H.x/ that does the integral of G.x; y/,

H.x/ !
Z y2.x/

y1.x/

G.x; y/ dy (4.8.5)

and finally our answer as an integral over H.x/

I D
Z x2

x1

H.x/ dx (4.8.6)

In an implementation of equations (4.8.4) – (4.8.6), some basic one-dimensional
integration routine (e.g., qgaus in the program following) gets called recursively:
once to evaluate the outer integral I , then many times to evaluate the middle integral
H , then even more times to evaluate the inner integral G (see Figure 4.8.1). Current
values of x and y, and the pointers to the user-supplied functions for the integrand
and the boundaries, are passed “over the head” of the intermediate calls through
member variables in the three functors defining the integrands for G, H and I .

struct NRf3 {quad3d.h
Doub xsav,ysav;
Doub (*func3d)(const Doub, const Doub, const Doub);
Doub operator()(const Doub z) The integrand f .x; y; z/ evaluated at fixed x and

y.{
return func3d(xsav,ysav,z);

}
};

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 199 — #221 ✐
✐

✐ ✐

4.8 Multidimensional Integrals 199

struct NRf2 {
NRf3 f3;
Doub (*z1)(Doub, Doub);
Doub (*z2)(Doub, Doub);
NRf2(Doub zz1(Doub, Doub), Doub zz2(Doub, Doub)) : z1(zz1), z2(zz2) {}
Doub operator()(const Doub y) This is G of eq. (4.8.4).
{

f3.ysav=y;
return qgaus(f3,z1(f3.xsav,y),z2(f3.xsav,y));

}
};
struct NRf1 {

Doub (*y1)(Doub);
Doub (*y2)(Doub);
NRf2 f2;
NRf1(Doub yy1(Doub), Doub yy2(Doub), Doub z1(Doub, Doub),

Doub z2(Doub, Doub)) : y1(yy1),y2(yy2), f2(z1,z2) {}
Doub operator()(const Doub x) This is H of eq. (4.8.5).
{

f2.f3.xsav=x;
return qgaus(f2,y1(x),y2(x));

}
};

template <class T>
Doub quad3d(T &func, const Doub x1, const Doub x2, Doub y1(Doub), Doub y2(Doub),

Doub z1(Doub, Doub), Doub z2(Doub, Doub))
Returns the integral of a user-supplied function func over a three-dimensional region specified
by the limits x1, x2, and by the user-supplied functions y1, y2, z1, and z2, as defined in (4.8.2).
Integration is performed by calling qgaus recursively.
{

NRf1 f1(y1,y2,z1,z2);
f1.f2.f3.func3d=func;
return qgaus(f1,x1,x2);

}

Note that while the function to be integrated can be supplied either as a simple
function

Doub func(const Doub x, const Doub y, const Doub z);

or as the equivalent functor, the functions defining the boundary can only be func-
tions:

Doub y1(const Doub x);
Doub y2(const Doub x);
Doub z1(const Doub x, const Doub y);
Doub z2(const Doub x, const Doub y);

This is for simplicity; you can easily modify the code to take functors if you need to.
The Gaussian quadrature routine used in quad3d is simple, but its accuracy is

not controllable. An alternative is to use a one-dimensional integration routine like
qtrap, qsimp or qromb, which have a user-definable tolerance eps. Simply replace
all occurrences of qgaus in quad3d by qromb, say.

Note that multidimensional integration is likely to be very slow if you try for
too much accuracy. You should almost certainly increase the default eps in qromb
from 10!10 to 10!6 or bigger. You should also decrease JMAX to avoid a lot of
waiting around for an answer. Some people advocate using a smaller eps for the
inner quadrature (over z in our routine) than for the outer quadratures (over x or y).

✐
✐

“nr3” — 2007/5/1 — 20:53 — page 200 — #222 ✐
✐

✐ ✐

200 Chapter 4. Integration of Functions

CITED REFERENCES AND FURTHER READING:

Stroud, A.H. 1971, Approximate Calculation of Multiple Integrals (Englewood Cliffs, NJ: Prentice-
Hall).[1]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), !7.7, p. 318.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), !6.2.5, p. 307.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, equations 25.4.58ff.

