ASTRONOMY 51/151- SPRING 2022 Project Sheet 5 DUE by Friday, April 1, 2022 300 points

A. Rest-frame absolute magnitudes and colors

For all the provided stellar templates (sampling the full range of spectral types and luminosity class; Pickles 1998), calculate, numerically, the absolute magnitude in the *U*-band (M_U), in the *B*-band (M_B), and in the *V*-band (M_V) in the AB magnitude system. Download *Assignment5.zip*; by unzipping it, the directory "Assignment5" will be created. The Pickles' templates are in:

./Assignment5/templates/pickles_stars/ascii_norm/

Within this directory, you will also find the file *README*. As the name of the file encourages, read it carefully. The file *Table.dat* provides the filename of each template, and the corresponding spectral type, luminosity class, and effective temperature at the surface. Complete the file Table.dat by adding 5 new columns, namely M_U , M_B , M_V , $U - B \equiv M_U - M_B$, and $B - V \equiv M_B - M_V$. The filter curves are in ./Assignment5/filters/

B. H-R Diagram

With the information calculated above and the information in *Table.dat*, construct the H-R diagram. Make two versions of the H-R diagram: 1) $y = M_V$ (with bright end, i.e., more negative values, at the top and faint end, i.e., larger values, at the bottom) vs $x = \log (T_{eff})$ (with hot left and cold right); 2) $y = M_V$ (with bright top and faint bottom) vs B - V (with blue, i.e., smaller color, left and red, i.e., larger color, right). In both version, plot with different colors each different luminosity class, and also over-plot the location of the Sun.

C. Color-Color Diagram

Plot y = U - B (with blue, i.e., smaller color, top and red, i.e., larger color, bottom) vs x = B - V (with blue, i.e., smaller color, left and red, i.e., larger color, right); connect the different points belonging to the same luminosity class and color code the individual stars as a function of temperature, preferably as a function of log T. Calculate U - B and B - V colors also for a perfect blackbody with different temperatures from $T_{\rm eff} = 2200$ K to $T_{\rm eff} = 100,000$ K, and over-plot them color coding them as a function of log T of the blackbody. Do you notice any trend? Describe and discuss your findings.

D. Apparent/Absolute magnitude and distance

The star Vega is a main sequence (luminosity class V) A0 spectral type star, with $M_V = 0.6$. Calculate the apparent magnitude of Vega as a function of distance in parsec (pc) over the range $[4.\times10^{-6}, 10^6]$ pc. Make a figure showing y=apparent magnitude of Vega

vs x=distance[pc] (using logarithmic scale for the x axis). Highlight (with a filled large circle) on this diagram the values for $d = 4.84 \times 10^{-6}$ pc (i.e., 1 AU, the distance between the Sun and the Earth), d = 7.68 pc (i.e., the actual distance of the Vega star), d = 10 pc (i.e., used for the definition of absolute magnitude), $d = 8.122 \times 10^3$ pc (i.e., the distance between the Sun and the Milky Way center), and $d = 7.78 \times 10^5$ pc (the distance to the galaxy Andromeda). Overplot the location of the Sun on this diagram ($m_V = -26.74$).