Stellar Atmosphere

Reading assignment
TUESDAY 10/20: Chapter 10.1/10.2/16.3

Homework Assignment #3 due by:
TUESDAY 10/27 before beginning of class



The Pressure Integral:

The microscopic source of pressure in a perfect gas is particle bombardment, resulting in

transfer of momentum, hence a force (F=dp/dt). The average force per unit of area is the
PRESSURE.

In thermal equilibrium in the stellar interior, the angular distribution of particle momenta is
Isotropic, i.e., particles are moving with equal probability in all directions.
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NOTE: the relation between p and vp depends upon relativistic considerations, whereas
n(p) depends on the type of particles and quantum statistics.



You have seen the Planck’s function, or the blackbody radiation from an object at temperature T:
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You have seen the Planck’s function, or the blackbody radiation from an object at temperature T:
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If in thermodynamic
equilibrium, then the
radiation flux is
Isotropic
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Radiation Pressure PRad:
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Stellar Opacity

Sun spectrum
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The Sun spectrum deviates substantially from the shape of the blackbody Planck
function due to solar absorption lines removing light from the Sun’s continuous spectrum
(a.k.a., line blanketing)



A star cannot be in THERMODYNAMIC EQUILIBRIUM (no net flow of energy through the
box or between matter and radiation; every process occurs at the same rate as its
iInverse process), as a net flow (outward) of energy occurs through the star, and the
temperature varies with location. However, the idealized case of a single temperature
can still be employed IF the distance over which the temperature changes significantly is
larger compared with the distances traveled by particles and photons between collisions/

interactions (mean free paths). In this case, we define LOCAL THERMODYNAMIC
EQUILIBRIUM (LTE).



A star cannot be in THERMODYNAMIC EQUILIBRIUM (no net flow of energy through the
box or between matter and radiation; every process occurs at the same rate as its
iInverse process), as a net flow (outward) of energy occurs through the star, and the
temperature varies with location. However, the idealized case of a single temperature
can still be employed IF the distance over which the temperature changes significantly is

larger compared with the distances traveled by particles and photons between collisions/
interactions (mean free paths). In this case, we define

Let’s consider the photosphere of the Sun, and the temperature varies from 5580K to
5790K over a distance of 25 km.
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l.e., the atoms see a constant kinetic temperature
between collisions, hence LTE is valid for H atoms in
the photosphere



Consider now a beam of parallel light rays traveling through a gas; absorption is the ensemble
of processes of removing photons (including scattering).

For pure absorption, the intensity declines exponentially falling by a factor of e-!' over a
characteristic distance:
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Consider now a beam of parallel light rays traveling through a gas; absorption is the ensemble
of processes of removing photons (including scattering).

For pure absorption, the intensity declines exponentially falling by a factor of e-!' over a
characteristic distance:
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I.e., the photospheric photons do not see a constant
temperature, and so LTE is not strictly valid in the photosphere.
LTE must be used with caution in stellar atmosphere.



Equivalent width (EW, or W) of spectral line
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Let N be the column density (i.e., m2), i.e., the number of atoms of a certain element lying
above a unit area of the photosphere.
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relative probabilities to make transitions. For example, f(Halpha)=0.637 and f(Hbeta)=0.119.



Let N be the column density (i.e., m2), i.e., the number of atoms of a certain element lying
above a unit area of the photosphere.

Na = number of absorbing atoms per unit of area (this is obtained from the Boltzmann and the
Saha equations once the temperature and the density are known).

But not all transitions have the same likelihood to happen, hence we use “I” representing the
relative probabilities to make transitions. For example, f(Halpha)=0.637 and f(Hbeta)=0.119.

fNa = effective number of atoms lying above each square meter of photosphere actively
involved in producing a given spectral line



Growth curve method
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This is used to determine the value of Na, hence the
abundances of elements in the stellar atmosphere.



Variation of the EW of
an absorption line with
increasing Na (a.k.a.,
curve of growth)
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For small abundances, when the absorption line is has not saturated, EW is proportional to
Na. In the central region is when the line saturates and the EW changes little because of
only the wings becoming deeper and so little change in the EW. Increasing Na even
further increases the importance of pressure broadening, and the wings are significantly
affected, with the EW growing as Na'/2.
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For a given element, the EW is measured from the spectrum (e.g., of the Sun). Using the
appropriate curve of growth, | can obtain fNa. Known fNa and f, | can derive the total
number of atoms of a specific element using the Boltzmann and Saha equations.

Repeating this for many elements, transitions, | can derive the chemical composition of
the photosphere of stars.



TABLE 9.2 The Most Abundant Elements in the Solar Photosphere. The relative abundance of an
element is given by log,,(Ne/Nu) + 12. (Data from Grevesse and Sauval, Space Science Reviews,
85, 161, 1998.)

~ Atomic Log Relative  Relative abundance
Element Number Abundance by number
Hydrogen 1 12.00
Helium 2 10.93 £ 0.004 — 8.5% N
Oxygen 8 8.83 +0.06 — 0.068% N
Carbon 6 8.52+0.06 —— 0.033% Nu
Neon 10 8.084+0.06 — 0.012% N
Nitrogen 7 71.92 £ 0.06
Magnesium 12 7.58 £ 0.05
Silicon 14 7.55 +£0.05
Iron 26 7.50 £ 0.05
Sulfur 16 7.33 £ 0.11
Aluminum 13 6.47 £ 0.07
Argon 18 6.40 £ 0.06
Calcium 20 6.36 £0.02 —— 0.00023% Ny
Sodium 11 6.33 4+ 0.03

Nickel 28 6.25 £ 0.04




mass nhumber

Isotope ¢ A « inparts ¢ inparts ¢

Hydrogen-1 1
Hydrogen-2 2
Helum-3 3
[ H-eﬁum-4 4

Camon-12 12
Caon-13 13
Nitogen-14 14
'Oxygen-16 5.16

RS- L
Magnesium-24 |24

’. - - RS .
‘Magnesium-25 25

g Mégneslum-ZG 328

SO

}

Silicon-28 |28

'Siicon29 29
‘Silicon-30 30
e
P
Cakium40 |40
won-s4 54
iron-56 56
Irons7 57

Aluminum-27 |27 1

-1

Nickel-58 58

fraction  fraction
per per
million million
705,700 909,964
23 15
as 15
275200 88,714
13,092 326
a7 4
1,105 102
5,920 a7?
1,548 100
208 = 12
a3 2
513 28
69 4
. .
58/ 3
653 30
34 2
23 1
396 16,
60 2
72 2
1,169. 27
28 1
49 1
3,879 149

H-1:705700/1000000 = 0.7057 = 70.6%

He-4:275200/1000000 = 0.2752 = 27.5%

Metals: 198100/1000000 = 0.0191 = 1.9%

A = mass number
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Loganthmic abundance
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Average Dinding energy per nucleon (MeV)
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NUCLEOSYNTHESIS:

- Nucleosynthesis occurs in the natural evolution of stars

- The initial H and He are fused into heavier nuclei, dispersed in the ISM in the terminal
phases of stellar evolution

- During the first 3 minutes after the Big Bang, H (75% by mass), He (25%) and traces
of D, 3He, Li, Be, B were produced (primordial nucleosynthesis)

- 12C, 160, 20Ne most abundant elements after H and He (produced by He fusion)

- 56Fe: nuclear binding energy per nucleon has a maximum at %6Fe, i.e., successive
nuclear fusion reactions cease to liberate energy when all light nuclei have been
fused into 56Fe. Farther fusion requires energy, hence the termination of energy-
generating stages of nuclear fusion.

- Very heavy elements can be formed efficiently by the capture of free neutrons
liberated as a by product of reactions between light charged particles.
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