The Continuous Spectrum of Light - Part |l

Reading assignment for:

THURSDAY 9/24: Chapters 5.1, 5.2 (not in
detail), 5.3, 5.4 (not in detail)

Homework assignment #1 due NOW



If the star is at a distance d from the instrument:
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(a.k.a., apparent brightness)
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a.k.a. the inverse
square law of light




If the star is at a distance d from the instrument:
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Incident energy flux on the detector
(a.k.a., apparent brightness)

a.k.a. the inverse
square law of light

NOTE 1: this law is true only without interstellar absorption
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Assuming no interstellar absorption:
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l.e., the apparent magnitude depends
on both the intrinsic luminosity and the
distance of the star



Assuming no interstellar absorption:
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m\? =2, A % 3\7 + C- monochromatic apparent magnitude

l.e., the apparent magnitude depends
on both the intrinsic luminosity and the
distance of the star

ABSOLUTE MAGNITUDE M: For an absolute comparison of intrinsic brightness, it is
common to discuss the magnitudes of stars would have IF they were all at the same
distance of d=10 pc, i.e., M = m(@d=10pc): L
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NOTE: Moo is not directly measurable. To obtain the total energy
radiated from a star requires making a bolometric correction






In bolometric units:

a.k.a. the inverse
square law of light
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Solar irradiance
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Given the Sun and another star:
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Photometric systems of magnitudes:

1. Photographic system: mps=myisual for AO stars (Vega)



Photometric systems of magnitudes:

1. Photographic system: mps=myisual for AO stars (Vega)

2. Photometric system: UBV
U=muy, B=mg (similar to photographic plate magnitude), V=my
zero-point determined using the sequence of standard stars (AO spectral
type stars)
For Vega (AO star, Tsurtace=10,000K), U-B=B-V=0
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Photometric systems of magnitudes:
1. Photographic system: mps=myisual for AO stars (Vega)
2. Photometric system: UBV
U=muy, B=mg (similar to photographic plate magnitude), V=my
zero-point determined using the sequence of standard stars (AO spectral

type stars)
FOI‘ Vega (AO Star, Tsurface=1 0,000K), U'B=B'V=O

3. Spectro-Photometric system
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Photometric systems of magnitudes:
1. Photographic system: mps=myisual for AO stars (Vega)
2. Photometric system: UBV
U=muy, B=mg (similar to photographic plate magnitude), V=my
zero-point determined using the sequence of standard stars (AO spectral

type stars)
FOI‘ Vega (AO Star, Tsurface=1 0,000K), U'B=B'V=O

3. Spectro-Photometric system
4. AB system (this has become the standard magnitude system):
YY\‘, O\E)> - -9.5605 f‘, - 43.0
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U_& sz MU P ME) The smaller (or more negative) the color
index, the bluer a star is. The color index
B-—\/ o M%- M\/ IS independent on distance of the star.
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goLoMETRAC LARRECTIoN [ BC := My, - M

Astronomers measure the apparent magnitude (m) and the distance (d) of a
star. The absolute magnitude (M) is computed by mentally moving the star at a
distance d=10pc. The absolute magnitude is then converted to an absolute

bolometric magnitude (Mool) using the bolometric correction (BC).
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goLoMETRAC LARRECTIoN [ BC := My, - M

Astronomers measure the apparent magnitude (m) and the distance (d) of a
star. The absolute magnitude (M) is computed by mentally moving the star at a
distance d=10pc. The absolute magnitude is then converted to an absolute
bolometric magnitude (Mool) using the bolometric correction (BC).
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The BC depends on the spectral type of

gﬂﬁq By the star; known the spectral type, | can
= 2.5 % e 4 derive its absolute bolometric magnitude
9 g D 1> Mool given BC (tabulated as a function of

j (% different spectral types) and My.
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Blackbody radiation:

Any object with a temperature above absolute zero emits light at all wavelengths with varying
degrees of efficiency. An ideal blackbody is an object that absorbs all of the light energy
incident upon it, and reradiates this energy with the characteristic spectrum. The radiation

emitted by a blackbody is called blackbody radiation. Stars, planets, and humans are
blackbodies, to a rough first approximation.



Blackbody radiation:

Any object with a temperature above absolute zero emits light at all wavelengths with varying
degrees of efficiency. An ideal blackbody is an object that absorbs all of the light energy
incident upon it, and reradiates this energy with the characteristic spectrum. The radiation
emitted by a blackbody is called blackbody radiation. Stars, planets, and humans are
blackbodies, to a rough first approximation.

Considering the power (energy per unit of time) radiate per unit of area per unit of
wavelength by a surface in thermodynamic equilibrium (i.e., having already integrated the
specific intensity over the solid angle):

| Planck’s function
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Blackbody radiation:

Any object with a temperature above absolute zero emits light at all wavelengths with varying
degrees of efficiency. An ideal blackbody is an object that absorbs all of the light energy
incident upon it, and reradiates this energy with the characteristic spectrum. The radiation
emitted by a blackbody is called blackbody radiation. Stars, planets, and humans are
blackbodies, to a rough first approximation.

Considering the power (energy per unit of time) radiate per unit of area per unit of
wavelength by a surface in thermodynamic equilibrium (i.e., having already integrated the
specific intensity over the solid angle):

| Planck’s function

s il Z:TT cz% — - 27T IA 93 o |
T A e I A St S
erg Crg
F — FV p—
A\ s cm? A Fu s cm? Hz



B\ (T) (10* W m~2 nm~! sr™!)

o

Visible light
-

Continuous spectrum

Blackbody curve
(Plank’s eq.)

-

4000 K

| l ! l ! l !

200

400

600 800 1000 1200 1400
Wavelength A (nm)




Total power (energy per unit of time) radiated per unit of area, i.e., the surface flux:
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Total power (energy per unit of time) radiated per unit of area, i.e., the surface flux:
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Total power (energy per unit of time) radiated per unit of area, i.e., the surface flux:
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Monochromatic luminosity: LLG'UM = &\I_Q/l }':JL A}/
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Monochromatic luminosity: [__ngx o VLQLE’L F:L CM/
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This relation is used to estimate stellar radii
by measuring the luminosity L and knowing
the surface temperature Te.
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This relation is used to estimate stellar radii
by measuring the luminosity L and knowing
the surface temperature Tes:.

Effective temperature Tes is defined as the temperature of a blackbody with the
same radiated power per unit of area F (1st definition of temperature)
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This relation is used to estimate stellar radii
by measuring the luminosity L and knowing
the surface temperature Tes:.

Effective temperature Tesr is defined as the temperature of a blackbody with the
same radiated power per unit of area F (1st definition of temperature)

Monochromatic flux for an observer at a distance d:
Energy of starlight with wavelength
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Position in wavelength of the maximum (peak) of the blackbody radiation:



Position in wavelength of the maximum (peak) of the blackbody radiation:
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Position in wavelength of the maximum (peak) of the blackbody radiation:
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COLOR INDICES

Sensitivity function S(A)
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COLOR INDICES
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COLOR INDICES
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COLOR INDICES
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NOTE: the color does not depend on (R/d)2 because this term cancels out in the above equation
The color is solely dependent on the temperature of a model blackbody star
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The hotter are star, the smaller (or more negative) the B-V color, hence the bluer the star



N I I I I I

—-0.5 0.0 0.5 120 | I 2.9



The Interaction of Light & Matter

Reading assignment for:

THURSDAY 9/24: Chapters 5.1, 5.2 (not in
detail), 5.3, 5.4 (not in detail)



