White Dwarfs

Reading assignment
THURSDAY 12/3: 16.6, 16.7

Homework Assignment #5 due by:
TUESDAY 12/15 before 9AM.



Massive stars: M>8 Msun

For a star with M>8 Msun, the temperature in the core can get high enough for C and O
fusion, ending its life as a CORE-COLLAPSE SUPERNOVA (type Ib, Ic, Il).

The He-fusing shell adds ash to the C/O core, the core continues to contract, T rises until C
fusion ignites, generating 160, 20Ne, 23Na, 23Mg, 2*Mg (very dependent on mass of the star)

==> onhion-like shell structure.
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Si fusion produces nuclei centered near 6Fe, most abundant being 54Fe, 56Fe, 56Ni.
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This is a highly endothermic process (energy is needed), hence thermal energy is
removed from the gas that would have otherwise provided the pressure to support the
core. Moreover, at density~1010 g/cm3 and T~8x10°9 K for a M=15 Msun, electrons
(which were providing support via electron degeneracy pressure) are captures by

nuclei: -
phe” — N+
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smaller than the energy leaving with neutrinos!
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NOTE: During Si fusion, the photon luminosity of a star with M=20 Msun is 107 times
smaller than the energy leaving with neutrinos!

Because of electron capture, most of the support for the core (electron degeneracy
pressure) is suddenly gone, and the core collapses extremely rapidly (speeds ~ 7x104
km/s) ==> within 1 sec, the size of Earth is compressed to the size of ~50 km.

The collapse of the inner core continues until: e ~ Bx 10"7 ﬂ/am? ~3 Q&“%

At this point, neutron degeneracy pressure dominates, halting the collapse; the core
rebounds, sending pressure waves outward into the falling material from the outer core
—> shock wave moving outward. The shock will drive the envelope and the remainder
of the nuclear-processed matter in front of it. The total kinetic energy in the expanding
material is ~10%" erg, roughly 1% of the energy released in neutrinos. At r~100 AU, the
material becomes optically thin, with ~1049 erg of energy released as photons with peak
luminosity nearly ~1043 erg/s, or 3x10° Lsun ==> CORE-COLLAPSE SUPERNOVA
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NOTE:
If M<25 Msun —> neutron star, supported by degenerate neutron pressure
If M>>25 Msun —> black hole

P\X + W -——-bA+‘>( “-S‘

Z
L,‘”ZIX* SRR

b
decoy

If the beta-decay half-life is short compared to the timescale for neutron capture, then
SLOW PROCESS (“s”). s-process reactions tend to yield stable nuclei.

s- and r- process nucleosynthesis:

If the beta-decay half-life is long compared to the timescale for neutron capture, then
RAPID PROCESS (“r”). r-process reactions result in n-rich nuclei.

“s” processes tend to happen in normal phases of stellar evolution, whereas “r”
processes occur during supernova explosions when large flux of neutrons exists. These
processes account for the abundance ratios of nuclei with A>60.
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A typical white dwarf has a radius comparable
to the Earth! But the mass is comparable to the

Sun (here show 1 Msun, but really the average
iS ~O5 MSun).
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R = 5800 km
Ve = 0.02¢
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White dwarfs are very hot ==> they cannot be made of H, o T
otherwise nuclear reactions (pp chains and CNO cycle) would H (if present)
make these objects much more luminous. WDs have a thin layer
of H covering a layer of He on the top of the C/O core.

Cross Section of a Typical
White Dwarl




i e o
(T::Bb _,TQ 3 3 ;{,Q Lwp
i - e —_ ’-——'3
em = Q) azad TCJ Q'TFQWD

9 Ty 2 ]

: s 3RS ' at 7.0 x 10 [<.
7 o tac kel [ ToosTe

White dwarfs are very hot ==> they cannot be made of H, ‘ T
otherwise nuclear reactions (pp chains and CNO cycle) would H (if present)

make these objects much more luminous. WDs have a thin layer

of H covering a layer of He on the top of the C/O core. (j{'kk;::l
Thermonuclear reactions are not responsible in producing the
energy radiated by WDs. WDs are made of cores from stars with
M<8-9 Msun, mostly made of completely ionized C and O. Typical
mass is 0.56 Msun, with 80% in [0.42, 0.70] Msun. Significant mass ool Bciia

loss occurred while on the AGB, through thermal pulses and White Dwarf
superwinds.
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This is similar to the previous estimate from hydrostatic equilibrium assumption ==> electron
degeneracy pressure is responsible for maintaining hydrostatic equilibrium in a WD.
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This is similar to the previous estimate from hydrostatic equilibrium assumption ==> electron
degeneracy pressure is responsible for maintaining hydrostatic equilibrium in a WD.
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l.e., more massive WDs are smaller
The mass-volume relation comes from
the star deriving its support from
electron degeneracy pressure.




Chandrasekhar limit:

Mwb =




Structure of a White Dwarf

Atmosphere (1-10 km)

Zone of temperature change

Isothermal core

WDs simply cool off at an essentially constant
radius as they slowly deplete their supply of thermal
energy (degenerate electron pressure does not
depend on T). The energy inside the WD is carried
by electron conduction, so efficient that the interior
of the WD is almost isothermal. Only at the non-
degenerate surface, the heat is transferred less
efficiently (through convection).
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From Eqgs. 2 and 5A of stellar structure with the mass as the independent variable:
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For a WD, using for the bound-free opacity:
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For a WD, using for the bound-free opacity: A = Y3Y, ,Oib Z(HX) 9_0_4_4

and using P = &7 Pu\/\H to replace the pressure P
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Cooling of aWD:

You can estimate the cooling timescale with: tcooling = U/Lwp
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Cooling of a WD:

You can estimate the cooling timescale with: tcooling = U/Lwp

/ N\

, WD luminosity
total thermal energy available

). Mo 3y,
Aoy <
I A>age thermal

Number of nuclei energy per nuclei
in the WD

A better estimate needs to account for the fact that the temperature decreases with cooling:

energy providing the luminosity

- i U = wa =C (TC)7/2 Depletion of the internal thermal
dt
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As the WD cools, the
nuclei crystallize.

The release of latent
heat slightly slows down
the cooling process
(extra internal source of
heat).
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There are two principle avenues for WD mass growth

Double Degenerate Single Degenerate

In either case, if the mass exceeds the Chandrasekhar mass, then the electron
degeneracy pressure cannot support the star and it collapses under gravity
resulting in a supernova — no remnant!
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Type la (white dwarf) SN

Q{il\/} The Center for Astrophysical Thermonuclear Flashes

Simulation of the Deflagration and Detonation
Phases of a Type la Supernovae

30 initial bubbles in 100 km radius.
Ignition occurs 80 km from the center of the star.
Hot material is shown in color and stellar surface in green.

This work was supported in part at the University of Chicago by the
DOE NNSA ASC ASAP and by the NSF. This work also used
computational resources at LBNL NERSC awarded under the

INCITE program, which is supported by the DOE Office of Science.

An Advanced Simulation and Computation (ASC) \
Academic Strategic Alliances Program (ASAP) Center / ‘
at The University of Chicago ASC
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Type la supernovae light curves:

raw

ABSOLUTE MAGNITUDE
(BRIGHTNESS)

b ® .
£ after correction N |
¢ for stretch factor Empirical adjustment can be made

. so all have the same absolute
U b magnitude, i.e. luminosity.

L it . The same luminosity means that if
S you identify that something is a Type
i T LT la supernova, it can be used as a

standard candle to get distance.
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1.4

Supernova Cosmology Project

Suzuki, et al., Ap.J. (2011)

12F

No Big
Bang |

Union2.1 SN la
Compilation

This 1s used to constrain
cosmological models
specifically the fact that
we are dominated by
dark energy (here{2,)

(more on this in Astro 32!)
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