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SYNCHROTRON RADIATION FIG1 (R&LF1G6 . 1)
Particles accelerated by a magnetic
field B will radiate

NONREAMVISTIC O REATIVISTIC e

↓ ↓

CYCLOTRON RADATION SYNCHROTRON RADATION

The frequency of The frequency
emission is simply the spectrum is much

frequency of gyration in more complex...
the magnetic field.

1
. TOTAL POWER

Deriving the total power over frequencies and emission angles,
emitted

by a single e- requires the generalization of the LARMOR FORMUL

to the relativistic case.
-

Larmor P = Cal
FORMULA 33

Considering only electrons
,

the relativistic Larmor formula becomes :

12P
=[

acceleration components 11 and I to the velocity.
NOTE :we consider the frame that is istantaneously

at rest with the particle
The Lorentz transform of these two components of the acceleration are :

& a =U where V = (1- = (1-B2)
-

is the

Lorentz factor
.



=> P= [Not : change of direction of velocity
,

not the modulus
, brings to

ARCE accelerations

Let's now calculate a
,

and at
.

Let's consider the motion of the e-

in the B field :

# (Vmi) = Forenit = e (E + = x B)
↓ Usually on large scale

F = (Umi) = 2x

Ex = erB = 0 -(0) => v = constant

# = Um = B The solution to this equationis
UNIFORM CIRCUAR MOTION Of the

projected motion on the normal place,

B
sincea in this plane is normal

to i => CIRCUAr Motion +

between &B UNIFORM MOTION ALONG THE FIELD↓ I

PITCH ANGLE

-> HELICAL MOTION (FIG 1)
B

Larmor Radius of FREQUENTOWsind

al eB

Replacing a = 0 and at in the equation of total emitted radiation

P = LetB in

Plugging in numbers for e
,

with -31 = P = 1
.

58x10- B2 pp sind



Using
·U

malmic energy Des s

CLASSICAL ELECTRON RADIUS

· Mel n
= 6.

65x10 aut THOMSON SCATERING Cross Section

=> P(1) = 2 cUs total Synchrotron power emitta

BY A SINGLE E-OF GIVEN PITCH

ANGLE L

For isotropic distribution ofvelocities ,
we need to average the terms

over solid angle .

For a given speed B : < &2)= sind =z
=> < P) = 2cUBUB2 [engls]

NOTE : PCm -> e-radiate 18362 times more power than do protons of

same U.

2. SPECTRUM

1. relativistic e => THE EMISSION IS BEAMED
DAGRAM

2. is I to i I-.............
------

The observer will see a PULSE of

radiation confined to a time interval

much smaller than the gyration
period, while the particle travels from

point 1 to 2 along the line of sight.
FIG6 . 2 on ROL



RADIUS

From the radius of curvature of the path : a PATH LENGHTFo along arc between >22
-

Fromsomet -
At

3) IAE) = NDR because o is constant

As = Not

replacing in the eg .

of motion : And
=V Umai

=> a =

=
v which differs a factor sind from the Lamor radius,-O -

wasind of the circle of projected motion in a place normal

to B.
Il

As = aDE=

Umb sing

#NGTIME during which the e-ecuits radiation that will reach the observer:

Ate = +z-t1= 1 In The Particle's

I I Wursing FRAME

times at which the particle passes points 152

In the OBSERVER'S FRAME
,

the PULSE is detected over an ARRIVAL TIME
-

interval DtA, that is SHORTER than Ate.

Ath = t - z = (1 - B)=Bann" - B)

Since 1-B =B) =>



the with of the observed pulse is smaller than the-

>Ata
= sind gyration period by a factor 3

(From Section 2
.3) From when we strotied the spectrum associated with pulses ,

if

we have small prises ,
the spectrum will be broader

nE(t) ↑ clElws/2

- #-

Fu
->t

Let'sdrithe truSe falling off
To device the FULL SPECTRUM of synchrotron radiation ,

let's perform a

Forrier transform : E(c) = -j E(t) eintot , remembering thata

Elu) contains all the into about frequency behavior of ECt). To convert it

into frequency into we write the energy per unit time per unit area :

#= EY()
= =ER TOTAL ENRY PER ARA P

dtdA uπ FREQUENCY RANGE IN THE

ENTIRE PULSE

Let's demonstrate that the power will be of the form IPW = CF(()
if the pulse repeats on an average timescale we have :

=An : FE())!
The pulse in the considered case repeats withasindin the OBSERVs

FRAME
.

I



=

W
= IE(u)12

2isind

Writing now the power in unit of soud Anc and replacing IECull? with
RADATED ENERGY as we saw in chapter 3 for moving changes :

↳
E():/Jet
F = 1- n . B

,
i unit rector : E ,

R(t)) = = vo(t)

themehave x(pkJetI
We measure K

, B , i in retarted frame
,

so let's change integration variable to

RoandApproximate
= In

,
asaa

Then :

=wx) k exp[I(t - n v (t))]d(t)2
=

=> w(0x(x)exp[(t(t)]
We want to write@ in the two polarization states &I ,

E1

seeFig ha



:wxB)exp[(i (t]un
*

* n x (n xp) = - E
/ sin(t) + 2 , cos() SO

For short time interval such that x
,
01 because of beaming ,

and 181 = 1
. Expanding sin and cos

,
and ignorino small cubic terms

,
we get :

nx(n xb) = - 2](zt) + E
,
0 [

Sinx = X-1S + -

]cosx = 1 - 1 ...

** t mt) + cost ()
C

Expanding sin and cos for small arguments, using again the approximation
1- I and v= c

,
we have

t- ("[+
We can now finally write eq.@ in the 2 polarization directions.

Expanding sin andcas again,
and defining Of = 1 + 8202

·

=Next
=Wexp



changviba
# = w exp[ = in(y + 4)]dy)
dwod

Only LITTLE ERROR is made in extending the limits of integration from -oo to

too
,
instead of over time of pulse ,

since power is small before/after pulse.

The integrals above are functions of M .

Since the most radiation occurs at

00 = M = 1/0
. 0=

so PEF) as mention

qualitatively above.

These integrals can be expressed in terms of the modified Bessel functions
of 113 and 213 order :

=((

PK
Integrating over solid angle gives the power emitted

by the particle per complete orbit in the projected
normal plane ,

doe 2t sinddo
,

since in one

gyration the particle traces out a come of opening
half-angle ↓ and thickness do.

R&LF1G6
. 5



See K
.
C

. Westfold 1959
,

AP5
,

130
,

241 to get :

=B [F(x) - G(x]

[F(x) + G(x)]
4πmc2

whereE,WI G(x) = xk2z(x)
The TOTAL POWER EMITED is the sum over the two polarization states :

=Besid F

LOW FREQUENCIES :

Xx= 1 -> F(x)-()(E)1
HIGH FREQUENCIES :

xx) - F(x) - (E) xPe - X

The spectrum rises as frequencies to the 113 power at low x
,

and

drops off exponentially at high X.

PEAK of spectrum at X = 0
.
29 Wa.



3. POLARIZATION

The polarization is elliptical
,
which correspond to a combination of

LINEAR + CIRCUAR polarization.

For a distribution of particles with random pitch angles &
,

the circular

polarization nearly cancels such that-
c

- 1

Vw =wa~
Corentz Fa CTOR OF A

PARTICLE WHOSE WC = W OF

OBSERVATION

& I is uniform in direction throughout the source
,
the linear

polarization for a single particle is :

#(w) = =
with x along E1

,

which is I to 's direction as projected on sky



4. SYNCHROTRON SELF-ABSORPTION

All emission processes have their absorption counterpart ,
as we saw already with

free-free thermal bransstrakling. On that case
,

we used the Kirchoff's law do drive

the absorption coefficient. In the synchrotron cas
,

we cannot do that
,

as we

have 1) relativistic particles and 2)the particles distribution is not thermal
.

So
,
in

this case we need to use relations between the A and B Einstein's coefficients

relating spontaneous and stimulated emission and absorption.
The synchrotion absorption is between continuum states

,
defined by the e-s

momentum and position .

To apply the Einstein's formalism
,

which was

for transitions between discrete states
,

we need to discretize the continuum

phase-space into elements of size 43 (as per the Planck's principle) and treat

transitions between these states as being discrete states.

To derive do we sum over all possible upper (E) and Lower (E) states :

① nu= [n()B - n(E)By]a()
I I LLINE PROFILE

EINSTEIN B-COEFFICIENTS : FUNCNONC 3transition probability for is a f-function

absorption stimulated emission that restrict the

value Ee = Enthr
We have assumed ISOTROPIC emission and absorption ,

which is true only if
B is tangled and vandom in direction

,

and the particle distributions are

isotropic .

We now want to reduce ⑰ to a form depending only on P(w).
It's easier to write the emission interms of O rather than wa

↑ (0
, Ej) = 2 + P(c)
↓

energy of the radiating e-



In terms of Einstein coeff :

P(v, E2)== t

↓ absorption due to stimula :

⑫toZB,)
This includes the partot

tea emission .

For the absorption - only part we can write :

In (E) B)(= B]P(, E)
=>

I
possible because O2

,
(0) acts like (

a S-function so that Z(n(E))P(r) -n(En-hr)
Turfo

hos 2 [n(E24o) - n(E)] P(oE)
For synchrotron ratiation : P(P

, E2) =2
Let's consider a population of electrons with an isotropic distribution

of momentum p ,
such that f(plop = no pro#

e-distribution number ofe per unit volume

function with momentum between

p + op
Number of quantum states per unit phase volume d3p : 3/43 (2 is the statistical

weight for a spin- particle).
ELECTRON DENSITY per Quantu State n(Ez) -> f(p)

, -Spo
Usually, we use Energy instead of momentum

.

Let's consider:

1
. e-distribution is isotropic
2. extreme relativistic case E= PCI 3. for an energy distribution of e-N(E)dE= hitf(p) ph olp



We then have:=[
Since absorption is low-frequency phenomenon and dEdo

,
we can rewriteB in a

more compact way :

↓E-E
5. POWER-LAW DISTRIBUTION OFC-ENERGIES

Cosmic sources accelerate e- to high relativistic energies tend to produce
POWER-LAW energy distributions : N(E) = KES over a wide range of

=>

energies. d

number density of e- with energies between

E and E + dE

If the
power law extends from Emin to Emax and is o otherwise

,
the density

of relativistic e
- is given by :

"re =FmaxKEdE -E I
energy density Ure

=SEmaxKEEdE= Elys
The difference in the brackets is = (u)Emax) if s = 1 in Me and =2 in Ure



The Emission Ceficient is : ju = NEE le

From the previous expression Pit = 2 PeBIFIG
with X =F ,

so the critical desty I ==
BE in

↓ hitM3S

6
.

27 x 1010 BE sin + [Hz]
where I is the angle between B and the line of sight ,

which is also

pitchthe angle of e-that beam radiation into the line

osightWe have then : jr
, "

= (s)K(Bsint)
+1120- 1st1)12 ⑧

=>
combination of numerical factors (STABLE)

From equation & and Q
,

the linear polarization is :

# = ) if is's direction is uniform throughout the source

For typical ranges [WI .
n to w3]

,
T - [0

.
64 -0

. 75]

DThe Absorption setICIENT is Lo = c(s)k(Bsint- O
>Table

As for jo ,
to is also different for the 2 polarizations.

Of B in the source is extremely tangled (e.g .

from turbolence)
,

our can

average sin t by integrating over 12 over all directions and normalizing.
The result from the integral is a ratio of 2 ↑ functions of different numbers.

see the table for values of <SMT>.



RADIATIVE TRANSFER OF SYNCHROTRON RADATION FOR A POWER-LAW

ENERGY DISTRIBUTION.

Fr = (1-e Is has a peak at frequency Um corresponding
to optical depth [m(s) ,

which is a

function of the slope . In can be

determined by setting t = 0 and solving

for to numerically (see Table)·
· =Om

,
E, 1 -> Source IS OPTIALLY Thick

Fr(tm) =
= (Bst5 [enys/cml]

FLUX DENSITY F = Io xe = Ix for uniform spherical source

or face - on disk of radius R



· (> Ym ,

[1-> SOURCE IS OPTICALLY THIN

St

I (0xim) = X jo = Xc
, (s)k(Bsnx)

-
~

↓ [eng/s/au3/Hz/so]
path leught through the source

Optical depth at Om : [m(s) = <(s)XK/Bsnt)
lagt

Fmaxif[x/
"
[ == 1

OPT
. THICK OPT. THIN log

Um

FoFox if sourc is uniona
uniform

-

For an uniform spherical source of radius R and distance o
,

an should

integrate over different path leughts,

BUT A REASONABLE APPROXIMATION IS

TO ADOPT R As THE TYPICAL PATH LENGHT
.



En
a

LI NEAR POLRIZATION FOR A POWER-LAW ENERGY DISTRIBUTION

· -Um :

= 3)
as discussed before

-70 % for an uniformB
.

The position angle is I to

B's direction as projected on the sky.

· Dum : T =- = 10-14 % for typical values of s

65 + 13

The position angle is 11 5 direction.


