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Fig. 1-6 A schematic comparison of the spectral responses of the U, B, and
V detector systems used in multicolor photometry. The response of the
human eye is shown for comparison.
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Figure 3.17 The interstellar ex-
tinction curve for two representative
lines of sight. The full curve is char-
acteristic of lines of sight that pass
only through the intercloud medium,
while the dashed curve is for a line
of sight that penetrates deep into a
molecular cloud. [From data pub-

" lished in Mathis (1990)]
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+~——6000°K at one astronomical unit
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. Fig. 1.5 Comparison of the visible solar energy-distribution curve with that
from a blackbody at 6000°K. The overall resemblance is good, although the
sun is quite deficient in the ultraviolet. (D. P. Le Galley and A. Rosen (eds.),
“Space Physics,” p. 111, John Wiley & Sons, Inc., New York, 1964.]
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FIGURE 9.5 The spectrunf of the Sun in 2 nm wavelength intervals. The dashed line is the curve of
an ideal blackbody having the Sun’s effective temperature. (Figure adapted from Aller, Atoms, Stars,
gnd Nebulae, Third Edition, Cambridge University Press, New York, 1991.)
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Fi6. 1.—~The ' — B, B — V relation for black bodies, The plotted points are taken from the last
two columns of Table 2, The standard Johnson relations for stars of luminosity classes I-V are also shown.
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Combining Boltzmann eq.
with Saha’s eq. :

Meghanand Saha and his equation below:
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Excitation Ionization

. > . >
Boltzmann equation Saha equation
(a) T <9900 K (b) T=9900 K (c) T>9900 K
All electrons on ground L ,
Temperature is right for Temperature is so large,
energy level, hence none .
. significant electrons to be Hydrogen atoms are
are on the |st excited level . . .
i excited on the Ist excited ionized, so no electrons
to make upper transitions , ,
level => Balmer lines => no Balmer lines

=> no Balmer lines
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FIGURE 8.11 The dependence of spectral line strengths on temperature.
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Fig.1-11 The progression of selected spectral properties through the sequence
of spectral classes. (G. Abell, ‘‘Ezploration of the Universe,”” Holi, Rinehart
and Winston, Inc., New York, 1964.)



TABLE 5.2 The wavelengths of selected hydrogen spectral lines in air. (Based on Cox, (ed.),
Allen’s Astrophysical Quantities, Fourth Edition, Springer, New York, 2000.)

Series Name Symbol Transition Wavelength (nm) Medium

Lyman Lya 21 121.567 vacuum
Lyp Jeol 102.572 vacuum
Lyy 41 97.254 vacuum
LY timit 00 « 1 91.18 vacuum
Balmer Ha 362 656.281 air
Hp 42 486.134 air
Hy ° 562 434.048 air
Hé 662 410.175 air
He 72 397.007 air
Hg 8«2 388.905 air
Hm; 00 « 2 364.6 air
Paschen Pax 473 1875.10 air
Pap 53 1281.81 air
Pay 63 1093.81 air
P&m 00 3 820.4 air
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FIGURE 5.6 Balmer lines produced by the Bohr hydrogen atom. (a) Emission lines. (b) Absorpt
lines.



TABLE 5.1 Wavelengths of some of the stronger Fraunhofer lines measured in air near sea level.
The atomic notation is explained in Section 8.1, and the equivalent width of a spectral line is defined
in Section 9.5. The difference in wavelengths of spectral lines when measured in air versus in
vacuum are discussed in Example 5.3.1. (Data from Lang, Astrophysical Formulae, Third Edition,
Springer, New York, 1999.)

Wavelength "~ Equivalent

__(nm) Name Atom Width (nm)
385.992 Fel 0.155
-388.905 Hg 0.235
393368 K Cll 2.025
396849 H Call 1.547
404,582 Fel 0.117
410.175 h,H§ HI 0.313
422674 g Cal 0.148
434048 G Hy HI 0.286
438356 d Fel 0.101
486.134 F Hp HI 0.368
516733 b4 Mgl 0.065
517.270 b, Mgl 0.126
518362 b Mgl 0.158
588997 : D, Nal 0.075
589.594 D, Nal 0.056
656281 C,Ha HI 0.402
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Figure 3.1 Absolute visual magnitude versus mass for components
of nearby binary stars. Visual and eclipsing binaries are marked by
squares and circles, respectively. [After Latham (1998) courtesy of

D. Latham]
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10793 stars with good Hipparcos:
parallaxes. The great majority ¢
stars fall along the MS that runs;
‘agonally from bottom right to to
left. The subgiant, red giant,
white-dwarf sequences are also
parent, as is the red clump. Th
and WD stars were selected to

parallaxes with errors smaller
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[After Perryman et al. (1995) g
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TYable 11 The main sequence!

Logarithm
Absolute Effective Absolute of

visual Color surface . Color bolometric  luminosity
Spectral  magnitude index  Bolomelric temperalure lemperalure magnitude L
type M, B~V corretion T,°K T,k  Mw 18
05 -6.0 -0.45 4.6 35,000 70,000 -10.6 . 6.13
BO -3.7 -0.31 3.0 21,000 38,000 ~6.7 4.56
BS -0.9 =017 1.8 13,500 23,000 -2.5 2.88
AD 0.7 0.00  0.68 9,700 15,400 0.0 1.8
A5 2.0 0.16 0.30 8,100 11,100 1.7 1. 20
FoO 2.8 0.30 0.10 7,200 9,000 2.7 = 0.8

F5 3.8 045 000 -6,500 7,600 3.8 0.31
GO 4.6 0.57 0.03 6,000 6,700 4.6 0.05
G5 52 0.70 0.10 5,400 6,000 5.1 -0.15
Ko 6.0 0.84 0.20 4,700 . 5,400 5.8 -0.43
K5 7.4 1.11 0.58 4,000 4,500 6.8 -0.83
MO 89 1.39 1.20 3,300 3,800 7.6 -1.15
M5 12.0 1.61 2.1 2,600 3,000 9.8 -2.03
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FIGURE 8.16 Luminosity classes on the H-R diagram. (Figure from Kaler, Stars and Stellar
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Spectra, © Cambridge University Press 1989. Reprinted with the permission of Cambnidge University
Press.)




Figure 3.6 Luminosity as a

' f of MK spectral class. The cun

BO A0 FO GO KO MO correspond to the luminosity
Spectral type marked at right. :
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Fig. 118 Color-muniiudo diagram of the Pleiades with reddening and absorption removed,
This young galactic cluster falls very alose to the sero-age main sequence, although the upper

end appenrs to have moved rightward, [After R. 1. Mitchell and H. L. Johnson, Astrophys. J., 16.0 .
136:418 (1957). By permission of The University of Chicago Press. Copyright 1957 by The
Universily of C'hicago.) 1
" . - E
180 -
200} e TN -

B-V

Fig. 1.17  Color-magnitude diagram of the old globular cluster M 3. The main sequence
terminates near B — V =~ 0.3 and swerves upward along the subgiant branch into the giant
region. (After H. L. Johnson and A. Sandage, Astrophys. J., 124:379 (1956). By permission
of The University of Chicago Press. Copyright 1956 by The University of Chicago.]
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Flg. 120 Schematic representation of the H-R diagram of a cluster of stars at three different
epochs in its history. After a short period of evolution, say about 10* years, the zero-age main
sequence has become an evolved main sequence similar to the Pleindes, Alter a long period of
eyoluﬁon. say about 10'® years, the diagram resembles those of the globular clusters. Super-
gisnts and white dwarfs have been omitted from this dingram because their participation is

poorly understood.
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Figure 6.2 The color-magnitude diagram for the globular cluster
M3. Known variable stars are shown as open circles, and the prin.
cipal sequences are annotated. [From data published in Buonanno
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Fig. 121 A composite color-magnitude diagram of 10 galactio elusters and 1 globular eluster.
Ages corresponding to the various main-sequence termination points are given along the right-
hand ordinate, The zero-age main sequence is taken to be the blue envelope of the observed
scts of main-sequence stars, Notice the rapidly evolved red giants in A + x Persei, which are
apparently no more than 2 million years old. Some white dwarfs are known in the Hyades,
indicating that it is possible to form them in a few million years, sither directly or as the end
product of the evolution of upper-main-sequence stars. Curiously enough, the Hyades has
no red giants, The oldest galactic cluster, M 67, is older than the sun and has scores of white
dwarfs, Many fascinating problems are uncovered in the attempts to interpret the star
densities in these disgrams quantitatively, [After A. Sandage, Astrophys, J., 126 :435 (19567).
By permission of The University of Chicago Press.  Copyright 1957 by The University of Chicago.)
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Fig. 122 The sbundances of the elements in the solar system. The dots represent values
obtained from the strengths of absorption lines in the spectrum of the sun, whereas the line
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