Baryon production from embedded metastable strings

Johanna Karouby

Massachussetts Institute of Technology

ASU Cosmic String Workshop February 2014

Outline

- Introduction : Goal and Motivation
- What are skyrmions?
- Our model : the embedded pion string
- Baryon production

REFERENCES

- Johanna Karouby, Ajit Mohan Srivastava "Baryon production from embedded metastable strings", arXiv:1312.0601
- Obstance of the second seco
- J.Karouby and R.Brandenberger, "Effects of a Thermal Bath of Photons on Embedded String Stability," Phys. Rev. D 85, 107702 (2012)

Full Skyrmion in 3 spatial dimension

Skyrmions are topological defects such that $\Pi_3(\mathcal{M}) \neq 1$ Textures : delocalized topological defects, unstable to collapse Skyrmions=global texture with VEV everywhere, pure gradient energy They can also describe baryons \Rightarrow skyrme model

•
$$\implies$$
 symmetry of the vacuum manifold = $O(4)$
• \implies vacuum manifold is a 3-sphere : $\mathcal{M} = S^3$
• \implies topologically unstable strings since $\Pi_1(S^3) = 1$
• But $\Pi_3(S^3) \neq 1 \Rightarrow textures/skyrmions$.

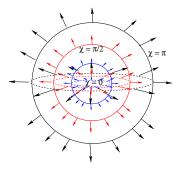
Embedded String Stability

We study the effective potential of the low-energy effective sigma model of QCD in the presence of a thermal bath of photons.

Goal : Stabilize cosmic string by a thermal bath of photons Motivation : Stabilized embedded defects \implies applications in cosmology.

- Explanation for the origin and coherence of cosmological magnetic fields on galaxy scale.
- CMB : temperature fluctuations, non-gaussianity.
- •very early universe \Rightarrow consider plasma.
- can contribute to structure formation.
- •may play a role in baryogenesis

Full Skyrmion in 3 spatial dimension



Variation of the chiral field is shown on a ball B^3 .

- 3 ANGLES: $\chi: 0 \Rightarrow \pi$ azimutal $\phi: 0 \Rightarrow 2\pi$ polar $\theta: 0 \Rightarrow \pi$
- χ varies from 0 (at the center) to $\chi=\pi$ for the boundary of the ball B^3
- \rightarrow *Compactification of* B³ in the physical space to S³.

6/16

Full Skyrmion in 2 spatial dimensions

Winding number one Skyrmion configuration in 2d.

South pole mapped to the center of the disk North pole mapped to the boundary of the disk compactifying it to a two-sphere S^2

The three angles $heta, \phi, \chi$ are related to the 4 scalar fields :

$$\pi^{0} = \cos\chi \quad \text{and} \quad \sigma = \sin\chi\cos\theta$$
$$\pi^{1} = \sin\chi\sin\theta\cos\phi \quad \text{and} \quad \pi^{2} = \sin\chi\sin\theta\sin\phi$$

The Pion String

The linear sigma model : simple toy model.

Symmetry breaking occurs when the sigma field takes on its vacuum expectation value

• Gives rise to a triplet of massless pions $\vec{\pi} = (\pi^0, \pi^+, \pi^-)$. Lagrangian :

$$\mathcal{L}_0 \,=\, rac{1}{2} \partial_\mu \sigma \partial^\mu \sigma + rac{1}{2} \partial_\mu ec \pi \partial^\mu ec \pi - rac{\lambda}{4} (\sigma^2 + ec \pi^2 - \eta^2)^2 \,,$$

- \implies symmetry of the vacuum manifold = O(4)
- \Longrightarrow vacuum manifold is a 3-sphere : $\mathcal{M} = S^3$
- \Longrightarrow topologically unstable strings since $\Pi_1(S^3)=1$.
- Effectively reducing the vacuum manifold to $S^1 \Longrightarrow$ strings.

The skyrme model

Skyrme model : Solitons in the linear sigma model can be interpreted as the baryons of QCD

 \Rightarrow Baryons productions from a pion string by computing the instanton production.

 \Rightarrow Baryon number is a topological quantum number $\Pi_3(S^3) = \mathbb{Z} \Rightarrow$ baryon number can only take on integer values

Effective Lagrangian

Electric charge \implies charged pions fields are coupled to electromagnetism \implies Lagrangian with covariant derivatives.

$$\mathcal{L} \,=\, \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma + \frac{1}{2} \partial_\mu \pi^0 \partial^\mu \pi^0 + D^+_\mu \pi^+ D^{\mu-} \pi^- - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + V_0 \,,$$

where
$$D^+_{\mu} = \partial_{\mu} + ieA_{\mu}$$
, $D^-_{\mu} = \partial_{\mu} - ieA_{\mu}$.
•2 complex scalar fields : $\pi_c = \pi^1 + i\pi^2$ and $\phi = \sigma + i\pi_0$.

• Partition function of the system, Z[T]

$$Z[T] = \int \mathcal{D}\Phi \mathcal{D}\pi_c \mathcal{D}A^{\mu} e^{-S[A^{\mu}, \Phi, \pi_c]} = \int \mathcal{D}\Phi \mathcal{D}\pi_c e^{-S[\Phi, \pi_c]} e^{\frac{V_{eff}(\Phi, \pi_c)V}{T}}$$

At high-temperature, we can truncate the series above

$$V_{eff}(\Phi,\pi_c,T) = \frac{\lambda}{4} (|\Phi|^2 + |\pi_c|^2 - \eta^2)^2 - \frac{\pi^2 T^4}{45} + \frac{e^2 |\pi_c|^2 T^2}{12} - \frac{e^3 |\pi_c|^3}{6\pi} T^2$$

The effective vacuum manifold now reduced : $\mathcal{M}=S^1 \implies$ stable string.

Quantum tunneling

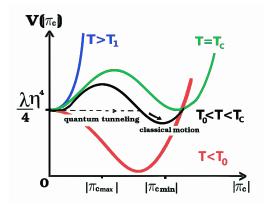


Figure: Finite temperature effective potential in the core of the string.

$$V_{eff}(\phi, \pi_c, T) \simeq \frac{\lambda}{4} (|\phi|^2 + |\pi_c|^2 - \eta^2)^2 + \frac{e^2 |\pi_c|^2}{12} T^2 - \frac{e^3 |\pi_c|^3}{6\pi} T \qquad (2$$

$$\frac{d^2\pi_c}{dr^2} + \frac{3}{r}\frac{d\pi_c}{dr} = V'(\pi_c)$$

$$\bullet S_{sphere} = \pi^2 \int r^3 dr \left[\frac{1}{2} \left(\frac{\partial \pi_c}{\partial r} \right)^2 + V(\pi_c) \right]$$
$$= -\frac{\pi^2}{2} R^4 \Delta V + 2\pi^2 R^3 S_1$$

•Extremizing
$$S_{sphere}$$
: $\frac{\partial_{S_E}}{\partial_R} = 0$

$$R(T) = \frac{3S_1}{\Delta V} = \sqrt{\frac{3}{2e}} \frac{1}{\epsilon \sqrt{T^2 - T_0^2}}$$

• T dependent decay rate per unit volume:

$$\frac{\Gamma_{sphere}}{V} \sim P_4 \exp[-\pi^2 \frac{1}{48 \ \lambda (\sqrt{\frac{e^4}{3\pi^2 \lambda} \frac{T^2}{T^2 - T_0^2}} - 1)^3}]$$
(3)

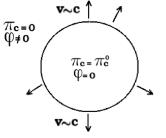


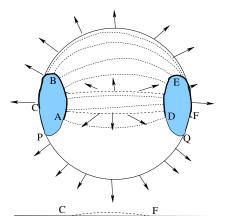
Figure: Bubble Instanton in the core of the string

Skyrmion production

Instanton meeting with opposite patches in the vacuum manifold

Consider 2 neighboring tunneling regions on the string \Rightarrow opposite patches on the vacuum manifold.

- small patches on S^3 since only such instantons dominate the tunneling process.
- size of patch depends on T
- ${\scriptstyle \bullet} \,$ strong fluctuations \Rightarrow large patches



Baryon production from embedded metastable strings

Instanton meeting with opposite patches in the vacuum manifold

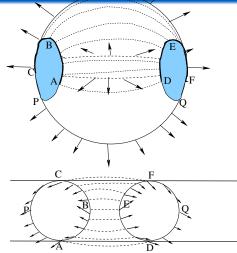


Figure: Top 2 patches ABCP and DEFQ on the vacuum manifold $S^2 \Rightarrow$ Bottom Region in-between the two patches \Rightarrow sensitive to the parts of the boundaries of the two patches Intermediate region \Rightarrow dashed lines shown on the S^2 Instanton meeting with opposite patches in the vacuum manifold

Skyrmion formation

Argued in Phys. Rev. D 43, 1047 (1991), A.M. Srivastava:

- Skyrmions never form with full winding number in phase transition \Rightarrow partial winding skyrmions
- If a partial winding configuration covers more than 50% of the vacuum manifold S₃ ⇒ evolve to a complete integer winding Skyrmion ⇒ baryons
- If the configuration covers less then 50% of $S_3 \Rightarrow$ it will shrink down and should decay in perturbative meson excitations.
- Seen in simulations of the formation of textures in the context of early Universe

Skyrmion production

Instanton meeting with opposite patches in the vacuum manifold

Estimates of baryon production by string decay

The number of instanton formed per unit volume per unit time is equal to the decay rate $\boldsymbol{\Gamma}.$

Assume $\Gamma > H$ then within a Hubble time the number of bubbles per unit length is

$$n(t)=\pi R_0^2rac{\Gamma}{V}H(t)^{-1}$$
 w here $R_0=rac{1}{\sqrt{\lambda\eta}}\sim r_{string}$

- on S_2 : average size of patch on S_2 : $rac{1}{8} imes Area$
- \Rightarrow P(oppositepatches) = P(fullwindingskyrmion) = $\frac{1}{8}$
- on S_3 :P(opposite patches) $\frac{1}{16}$

 \implies number of baryon-anti-baryon produced per unit length : $n_b = \frac{n}{16}$. The largest number of bubbles nucleated on the string during Hubble time can be simply estimated

$$n \simeq (2R(T))^{-1} \simeq \sqrt{\frac{e}{6}} \epsilon(T) \sqrt{T^2 - T_0^2} \tag{4}$$

Skyrmion production

Instanton meeting with opposite patches in the vacuum manifold

Conclusion : Embedded String Stability

We have studied the effective potential of embedded strings of a thermal bath of photons and studied baryon production.

- Studied of 1st order phase transition for strings : eg superconducting strings
- The plasma effects lift the potential in direction of the charged pion fields.
- This lead to an effective vacuum manifold which admits cosmic string solutions, the pion strings.
- Topological defects embedded defects of the full theory with the property that they are stabilized in the early Universe for the right values of the parameters.
- Decay of the string naturally leads to baryon production and to meson excitations
- Our arguments are general and apply to many theories beyond the Standard Model.
- Possibilities to do same mechanism with domain walls