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The Paradox

x
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The electric field goes as 1/r

The energy density goes as 1/r2

Thus, the energy goes as∫
1

r
dr = ln(r)
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Basic equations

The electromagnetic potential:

Aµ(x) =

∫
G (X ,X ′)jµ(X ′))d4X ′ =

∫
G (x , t, x ′, t ′)Jµ(x ′, t ′)dx ′dt ′

(where X = (t, x , y , z), jµ is volumetric current density, Jµ is linear current density)

The electric field on the string:

Ex(x , t) = F 10 = −∂xAt − ∂tA
x

Combine and integrate by parts:

E (x , t) = −
∫

G (x , t, x ′, t ′)
(
∂x ′J

t(x ′, t ′) + ∂t′J
x(x ′, t ′)

)
dx ′dt ′
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The integral equation in (x , t)

The current on a superconducting string due to Ex :

∂xJ
t + ∂tJ

x = q2Ex

Combine with:

E (x , t) = −
∫

G (x , t, x ′, t ′)
(
∂x ′J

t(x ′, t ′) + ∂t′J
x(x ′, t ′)

)
dx ′dt ′

To get the integral equation:

E (x , t) = Eext − Q

∫
G (x , t, x ′, t ′)E (x ′, t ′)dx ′dt ′

Here, Eext = δ(x)δ(t) and Q = q2.
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Rotating into (u, v)

In the coordinates
t

x

uv

the retarded Green function in two dimensions is given by

G =
δ(v − v ′)

u − u′
+
δ(u − u′)

v − v ′



The integral equation in (u, v)

E (u, v) = δ(u)δ(v) − Q

(∫ u

0

E (u′, v)

u − u′ + δ
du′ +

∫ v

0

E (u, v ′)

v − v ′ + δ
dv ′
)

(where δ ≈ 10−29 cm is the string thickness, added to prevent divergence)



The null lines
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uv



The electric field on the null lines

With ER(u, v) = −δ(v)f (u):

E (u, v) = δ(u)δ(v) − Q

(∫ u

0

E (u′, v)

u − u′ + δ
du′ +

∫ v

0

E (u, v ′)

v − v ′ + δ
dv ′
)

becomes

f (u) = −Q

(
1

u + δ
+

∫ u

0

f (u′)

u − u′ + δ
du′
)
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The electric field on the null lines

Laplace transform:

f (u) =
Q

δ

∫ ∞
0

e−α(u/δ+1)

(1 − Qe−α Ei(α))2 + (Qπe−α)2
dα

Approximate: u � δ, ln(u/δ) � 1:

f (u) =
Q

δ

∫ ∞
0

e−αu/δ

(1 + Q(ln(u/δ))2
dα

Solve to get:

f (u) =
Q

u

1

(1 + Q ln(u/δ))2
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The electric current on the null lines

Recalling:
∂xJ

t + ∂tJ
x = q2E

The current is given by:

JuR(u, v) = −Q

2
δ(v)

∫ u

0
f (u′)du′

Solve to get:

JuR(u, v) =
Q

2

δ(v)

1 + Q ln(u/δ)

There is significant decline in current once u = δe1/Q .
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The interior
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The electric field in the interior

On the interior:

E (u, v) = ER(u, v) + EL(u, v) + Eint(u, v)

The integral equation is:

Eint(u, v) = Q

(
f (u)

v + δ
+

f (v)

u + δ
−
∫ u

0

Eint(u
′, v)

u − u′ + δ
du′ −

∫ v

0

Eint(u, v
′)

v − v ′ + δ
dv ′
)

Laplace transforms:

Eint(u, v) =
2Q2

uv

1

(1 + Q ln(uv/δ2))3
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The electric current in the interior

Now, the current is given by

Jxint(u, v) =
Q

2

(∫ u

0
E (u′, v)du′ +

∫ v

0
E (u, v ′)dv ′

)

which solves to

Jxint(u, v) = −Q2

2

(
1

v
+

1

u

)
1

(1 + Q ln(uv/δ2))2



The electric current in the interior
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Results

Jxint(u, v) = −Q2

2

(
1

v
+

1

u

)
1

(1 + Q ln(uv/δ2))2

t

x

uv

JvL (u, v) = −Q

2

δ(u)

1 + Q ln(v/δ)
JuR(u, v) =

Q

2

δ(v)

1 + Q ln(u/δ)



Results

The currents decline exactly as quickly as required to cure the
divergence

The current reaches half its initial strength at δe1/Q

For regular electromagnetism (q2 = 1/137), with a string size
of δ ≈ 10−29 cm, the current declines to half its initial value
for the size of the observable universe.

The current declines to three-quarters its initial strength at
about 1 Å

For the gravitational case, this same paradox exists (and
presumably, the same solution applies)

With q2 analogous to Gµ ≈ 10−8, we will effectively never see
this effect
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Questions?


