## How to See the Dark?

Signatures of strings and other things in the 21 cm radiation from highredshift hydrogen.

**Oscar Hernández** 

McGill University/Marianopolis College

ASU-Tufts Cosmic String Workshop 2014

## Outline

- Dark Ages and 21 cm radiation
- Radiative Transfer
- Brightness Temperature diff. Cosmic Gas vs. String Wake
- Strings and Their Signatures around z=20
- Strings and Their Signatures just before reionization.
- The 21 cm Signature of Cosmic String Wakes,

R. Brandenberger, R. Danos, O.H., G. Holder , JCAP 1012 (210) 028,2010, arXiv:1006.2514. Angular 21 cm Power Spectrum of a Scaling Distribution of Cosmic String Wakes, O.H., Y. Wang, R. Brandenberger, J. Fong, JCAP 1108 (2011) 014, arXiv:1104.3337. The High-Redshift Neutral Hydrogen Signature of an Anisotropic Matter Power Spectrum, O.H., G.P.Holder, JCAP 1109 (2011) 031, arXiv:1104.5403. The 21 cm Signature of Shock Heated and Diffuse Cosmic String Wakes, O.H., R. Brandenberger, JCAP 1207 (2012) 032, arXiv:1203.2307. Wouthuysen–Field coupling in Cosmic Strings Wakes. work in progress.

## Observations during Dark Ages can directly constrain cosmology

- During Dark Ages, 1100 < z < 20, the 10<sup>-5</sup> density fluctuations present at recombination grow to form structure.
- Physics is simple then, calculations can be done, an observed deviation from expected evolution would be a clean signature of new physics, e.g. cosmic strings



image from the WMAP http://map.gsfc.nasa.gov/media/060915/index.html

## How to see the Dark

• Use the <u>CMB light</u> released at recombination as a backlight for the <u>Cosmic Hydrogen Gas</u>.



## Neutral hydrogen cloud can absorb or emit 21 cm radiation

through the spin flip transition of the hyperfine split ground state



## **Radiative transfer**

A light ray with frequency  $\nu$  is travelling through the hydrogen cloud in direction  $\hat{\mathbf{k}}$ . It has a position dependent intensity  $\mathbf{I}(\vec{\mathbf{x}}, \nu, \hat{\mathbf{k}})$ .

The change in its intensity, dI, at the point  $\vec{\mathbf{x}}$  is due to:

- 1. Absorption
- 2. Stimulated Emission
- 3. Spontaneous Emission



| Absorption &<br>Stimulated Emission                                                                                                                                                                         | Spontaneous Emission                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proportional to:<br>• Intensity = I<br>• distance travelled = $ds$<br>• H particle density = $n_0$ , $n_1$<br>• cross sections $\sigma_{01}$ , $\sigma_{10} \propto$<br>(Einstein coeff)<br>×(line profile) | Proportional to:<br>• distance travelled = $ds$<br>• H particle density = $n_1$<br>• emission coefficient $\epsilon_{\nu} \propto$<br>(Einstein coeff)<br>×(line profile) |
| $d\mathbf{I} = -\mathbf{I} \left( n_0 \sigma_{01} - \sigma_{10} n_1 \right)  \mathrm{ds}$                                                                                                                   | $dI = \epsilon_{\nu} n_1 ds$                                                                                                                                              |

| Absorption &<br>Stimulated Emission                                                                                 | Spontaneous Emission                                                       |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Cross sections                                                                                                      | Atomic emission coefficient                                                |
| $\sigma_{_{01}}$ , $\sigma_{_{10}}$ X                                                                               | $\epsilon_{ u}$ $lpha$ :                                                   |
| (Einstein coefficients)                                                                                             | (Einstein coefficients)                                                    |
| ×(line profile)<br>$\sigma_{01} = h\nu/(4\pi) B_{01} \phi_A(\nu)$<br>$\sigma_{10} = h\nu/(4\pi) B_{10} \phi_A(\nu)$ | ×(line profile)<br>$\epsilon_{\nu} = h\nu/(4\pi) A_{10} \phi_{\rm E}(\nu)$ |

The Einstein coefficients A<sub>10</sub>, B<sub>10</sub>, B<sub>01</sub> characterize an atomic property. Of the three only one is independent:

$$B_{01}/B_{10} = 3$$
,  $A_{10}/B_{10} = 2 h \nu^3/c^2$   $A_{10} = 2.85 \times 10^{-15} s^{-1}$ 

• The line profiles  $\phi_A = \phi_E \neq \delta$  ( $\nu - 1420$  MHz) because of the Hubble flow.





## Ugly formula

- Quantify I(v) through brightness temperature  $T_v$  $I = T_v 2k_B v^2/c^2$
- Define the spin temperature T<sub>s</sub> through the ratio of ullettriplet to singlet particle densities as  $n_1/n_0 = 3$  Exp( –  $h\nu_{21}/(k_{B}T_{S})).$
- Define the optical depth  $d\tau_{v}$  which depends on Einstein coeff, line profile, distance travelled Ugly formula becomes beautiful

$$\mathbf{dT}_{\gamma} = \begin{bmatrix} -\mathbf{T}_{\gamma} + \mathbf{T}_{\mathbf{S}} \end{bmatrix} \, \mathbf{d}\tau_{\nu}$$

$$T_{S} >> T^{*}$$

$$T_s >> T^*$$

$$\mathbf{dT}_{\gamma} = \begin{bmatrix} -\mathbf{T}_{\gamma} + \mathbf{T}_{\mathbf{S}} \end{bmatrix} \mathbf{d\tau}_{\nu}$$

- Multiply both sides by the integrating factor  $e^{\tau_{\nu}}$
- Imagine observing the 21 cm ray after it has passed through a slab of hydrogen gas at particular distance, specified by the redshift of the 21 cm photon. The slab is thin enough that T<sub>s</sub> is constant.

absorption-stimulated emission spontaneous emission

 $\mathbf{T}_{\gamma}(\tau_{\nu}) = \mathbf{T}_{\gamma}(\mathbf{0})\mathbf{e}^{-\tau_{\nu}} + \mathbf{T}_{\mathbf{S}}(\mathbf{1} - \mathbf{e}^{-\tau_{\nu}})$ 

## Brightness Temperature difference $\delta T_b$

Compare the 21 cm ray after passing through a high redshift hydrogen cloud to what it would have been had we had a clear view of the CMB.

$$egin{aligned} \mathbf{T}_{\mathbf{b}} &\equiv \mathbf{T}_{\gamma}( au_{
u}) - \mathbf{T}_{\gamma}(\mathbf{0}) \ &= (\mathbf{T}_{\mathbf{S}} - \mathbf{T}_{\gamma}(\mathbf{0}))(\mathbf{1} - \mathbf{e}^{- au_{
u}}) \ &pprox (\mathbf{T}_{\mathbf{S}} - \mathbf{T}_{\gamma}(\mathbf{0}))(\mathbf{1} - \mathbf{e}^{- au_{
u}}) \ &pprox (\mathbf{T}_{\mathbf{S}} - \mathbf{T}_{\gamma}(\mathbf{0})) au_{
u} \end{aligned}$$

When we finally observe these photons they are redshifted:

 $\delta \mathbf{T_b} pprox rac{\left(\mathbf{T_S} - \mathbf{T}_{\gamma}(\mathbf{0})
ight)}{1 + \mathbf{z}}$ 

$$\begin{array}{l} \text{Optical Depth } \tau_{\nu} \, \text{of a } \Delta \text{s Slab of Hydrogen} \\ \tau_{\nu}(\text{s}) = \frac{3\text{hc}^{2}\text{A}_{10}\text{x}_{\text{HI}}\text{n}_{\text{H}}}{32\pi\nu\text{k}_{\text{B}}\text{T}_{\text{S}}} \, \Delta \text{s} \, \phi(\text{s},\nu) \\ \approx \frac{2.6 \times 10^{-12} \, \text{n}_{\text{H}}\Delta \text{s} \, \phi(\text{s},\nu) \, \text{mKcm}^{2}\text{s}^{-1}}{\text{T}_{\text{s}}} \end{array}$$

Brightness temp. from a  $\Delta s$  Slab of Hydrogen  $\delta T_{b} \approx \left(1 - \frac{T_{\gamma}(0)}{T_{s}}\right) (2.6 \times 10^{-12} \text{ mK cm}^{2} \text{s}^{-1}) n_{H} \frac{\Delta s \phi(s, \nu)}{1 + z}$ 

Observing 21 cm radiation depends crucially on  $T_s$ :

- $T_s$  above  $T_\gamma$  emission.
- $T_s$  below  $T_{\gamma}$  absorption.

What mechanisms drive  $T_s$  above or below  $T_{\gamma}$ ?

- Interaction with CMB photons
- Spontaneous emission
- Collisions with hydrogen, electrons, protons
- Near the end of the Dark Ages, scattering with UV photons. Ignore this for now.

$$n_1 (B_{10} I + A_{10} + C_{10}) = n_0 (B_{01} I + C_{01})$$

determines spin temperature in equilibrium.

$$\left( \mathbf{1} - \frac{\mathbf{T}_{\gamma}}{\mathbf{T}_{\mathbf{S}}} \right) = \frac{\mathbf{x}_{\mathbf{c}}}{\mathbf{1} + \mathbf{x}_{\mathbf{c}}} \left( \mathbf{1} - \frac{\mathbf{T}_{\gamma}}{\mathbf{T}_{\mathbf{K}}} \right) \mathbf{x}_{\mathsf{c}} \Xi C_{10} T_{*} / (A_{10} T_{\gamma}),$$

$$C_{10} \text{ depends on densities and } T_{\mathsf{K}}$$

Collision coefficients  $x_c$ drive  $T_s$  towards  $T_\gamma$  or  $T_K$ 

- If  $x_c$  is small  $T_s$  is driven towards  $T_{\gamma}$
- If  $x_c$  is large  $T_s$  is driven towards  $T_K$

$$egin{split} \left( \mathbf{1} - rac{\mathbf{T}_{\gamma}}{\mathbf{T_S}} 
ight) = rac{\mathbf{x_c}}{\mathbf{1} + \mathbf{x_c}} \left( \mathbf{1} - rac{\mathbf{T}_{\gamma}}{\mathbf{T_K}} 
ight) \end{split}$$

Optical Depth 
$$\tau_{\nu}$$
 of a  $\Delta s$  Slab of Hydrogen  
 $\tau_{\nu}(s) = \frac{3hc^2 A_{10} x_{HI} n_H}{32\pi\nu k_B T_S} \Delta s \phi(s, \nu)$ 

$$\approx \frac{2.6 \times 10^{-12} n_H \Delta s \phi(s, \nu) mKcm^2 s^{-1}}{T_s}$$

Up to this point the hydrogen cloud could be anything:

- the cosmic gas (CG)
- a cosmic string wake.

The combination  $n_H\Delta s\,\phi(s,\nu)/T_s\,$  is different for each of the two cases.

## **Cosmic String Wake**

From the point of view of an observer behind the string and moving with it, matter flowing past the string acquires a velocity kick  $4\pi G\mu v_{string} \gamma_{Vstring}$  towards the central plane





- Dark matter streams through and oscillates about the central plane,
- Baryons collide in the centre form shocks and heat the gas. Shocks can lead to a factor of 4 in the overdensity of the baryons.

The combination  $n_H \Delta s \phi(s, \nu) / T_s$  is different for each of the two cases.

- For shock heated string wakes  $(n_H)_{wake} \approx 4(n_H)_{CG}$
- T<sub>s</sub> depends on
  - gas temperature  $T_{K}$  (estimated in Zel'dovich approximation for wakes),
  - collision coefficients  $\mathbf{x}_{C}$  , (that also depend on  $T_{K}$  and densities)
- Line profile Ø depends on the velocity gradient of the bulk motion along the line of sight.

## Hubble Flow $\Rightarrow$ Line Profile $\phi(\nu)$

Cosmic Gas

**Cosmic String Wake** 

θ

# $$\begin{split} & \underset{\nu}{\text{Optical Depth}} \\ & \tau_{\nu}(s) \approx \frac{2.6 \times 10^{-12} \ n_{H} \Delta s \, \phi(s,\nu) \ mKcm^{2}s^{-1}}{T_{s}} \\ & \text{Cosmic Gas:} \approx 8.6 \, mK \, \frac{1}{T_{S}} (1+z)^{3/2} (1+\delta_{b}) \end{split}$$

• String Wake: 
$$\approx \frac{17 \,\mathrm{mK}}{2 \sin^2 \theta} \frac{(\overline{n_H})_{wake}}{(\overline{n_H})_{CG}} \frac{1}{T_S} (1+z)^{3/2} (1+\delta_b)$$
$$\approx 70 \,\mathrm{mK} \frac{1}{T_S} (1+z)^{3/2} (1+\delta_b)$$

For wakes we see a 8x enhancement (70  $\approx$  8 x 8.6):

$$- \theta \sim \pi / 4$$

$$-(n_{\rm H})_{\rm wake}/(n_{\rm H})_{\rm CG} \sim 4$$

## But there's more ...

Collision coefficients, x<sub>c</sub>, enhancement

$$\begin{split} \delta \mathbf{T}_{\mathbf{b}} &\approx \frac{(\mathbf{T}_{\mathbf{S}} - \mathbf{T}_{\gamma}(\mathbf{0}))}{\mathbf{1} + \mathbf{z}} \ \tau_{\nu} \\ &= \frac{\mathbf{17} \, \mathbf{mK}}{\mathbf{2} \sin^{2} \theta} \ \frac{(\overline{\mathbf{n}_{\mathbf{H}}})_{\mathbf{wake}}}{(\overline{\mathbf{n}_{\mathbf{H}}})_{\mathbf{CG}}} (\mathbf{1} + \mathbf{z})^{1/2} (\mathbf{1} + \delta_{\mathbf{b}}) \left(\mathbf{1} - \frac{\mathbf{T}_{\gamma}}{\mathbf{T}_{\mathbf{S}}}\right) \end{split}$$
The collision coefficient factor can be

a factor of 10 larger for wakes vs. CG.

All together this makes for a factor of 80 enhancement for string wakes versus the cosmic gas.

#### Cosmic Gas 21 cm Global $\delta T_{b}$



## Cosmic Wake Temperature

$${f T}_{f K}\,\simeq\,[{f 20}~{
m K}]({f G}\mu\,{f 10^6})^{f 2}({f v_s}\gamma_s)^{f 2}rac{{f z_i+1}}{{f z+1}}$$

Determined by considering thermalization of shock heated baryons. (Zel'dovich approximation and hydrocode of Sornborger et al.)

## Current limits on the cosmic string tension Gµ

using the combined data from WMAP and SPT  $G\mu \, \lesssim \, 10^{-7}$ 

## Global 21 cm $\delta T_b$ vs. string tension $G\mu$



## What about the Noise?

- z=20 and 35 the average  $\delta T_{\rm h}$  of the cosmic gas varies Between  $\bullet$ between -0.34 mK to -8.6 mK.
- Thermal noise per redshift cell:
  - T<sub>sys</sub> is approximately the sky temperature,  $\sqrt{2}$  T<sub>sys</sub>  $\theta_{
    m diffraction}$

 $\mathbf{T_n} =$ 

- B is the bandwidth,
- $-\tau$  is the total observing time,
- $\theta_{\text{desired}}$  is the resolution desired (e.g. 1 arcminute)
- $\theta_{diffraction}$  is the diffraction limited resolution 21cm (1+z) /A<sub>e</sub>
- $-A_{\rho}$  is the effective antenna area.

 $\mathbf{T}_{\text{sys}} = \mathbf{1.26} \text{ K} \left( (\mathbf{1} + \mathbf{z}) \ \frac{1 \text{GHz}}{\nu_{21}} \right)$ 

**ARCADE 2, 2009** 

2.6

 $\sqrt{\mathbf{B} \tau} \theta_{\text{desired}}$ 

#### Angular resolution needed to see a string wake:

- $\theta_{L}(z)$  resolution needed for the wake's length.
- $\theta_{W}(z)$  resolution needed for the wake's width.
- $\theta_{desired}(z) \sim \theta_W(z)^{1/3} \theta_L(z)^{2/3}$ , estimate of the resolution in radians needed to calculate the noise per pixel.

$$\sim \frac{1}{3} \frac{1}{(\sqrt{z+1}-1)} \sqrt{\frac{(z+1)}{(z_i+1)}} \Big( 4\pi G \mu \frac{3}{10} \frac{(z_i+1)}{(z+1)} \Big)^{1/3}$$

Put this together to arrive at ....

### At SKA:

- z=20,
- A<sub>e</sub>=1km<sup>2</sup>,
- *τ*=10<sup>4</sup>hr
- For Gµ ≥ 3 x 10<sup>-8</sup> we would be able to pick out the wakes above the noise and measure their density.

# But is there any hope of having a cosmic string signal before the SKA ?

## The first Starlight

As the first galaxies form a possibly deeper absorption feature appears around z~20

From http://scienceblogs.com/startswithabang/2010/01/25/seeing-red-in-the-sky/ by Yuuji Kitahara

## Wouthysen-Field effect

H atoms can change hyperfine states through the absorption and spontaneous re-emission of a Lyman alpha photons.

Figure from Furlanetto, Oh, Briggs, Phy Rep 433 (2006)



Lyman alpha photons are produced in stars and these resonantly scatter off H coupling  $\rm T_S$  to the cooler  $\rm T_K$ 

## WF absorption trough



Figure from Liu, Pritchard, Tegmark & Loeb 2013



Stars formation generates Lyman alpha, but also X rays which heat the cosmic gas.

No absorption trough if the cosmic gas is heated to CMB temperatures or beyond before enough Lyman alphas are produced to couple the  $T_s$  to the  $T_k$  there will be no Wouthysen-Field effect absorption trough.

## We may soon find out if it exist!

THE ASTROPHYSICAL JOURNAL LETTERS, 782:L9 (5pp), 2014 February 10 © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

#### doi:10.1088/2041-8205/782/1/L9

#### PROBING THE DARK AGES AT $z \sim 20$ : THE SCI-HI 21 cm ALL-SKY SPECTRUM EXPERIMENT

 TABITHA C. VOYTEK<sup>1</sup>, ARAVIND NATARAJAN<sup>1,2</sup>, JOSÉ MIGUEL JÁUREGUI GARCÍA<sup>3</sup>, JEFFREY B. PETERSON<sup>1</sup>, AND OMAR LÓPEZ-CRUZ<sup>3</sup>
 <sup>1</sup> McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA; tcv@andrew.cmu.edu
 <sup>2</sup> Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center, University of Pittsburgh, 100 Allen Hall, 3941 O'Hara Street, Pittsburgh, PA 15260, USA
 <sup>3</sup> Instituto Nacional de Astrofísica, Optica y Electrónica (INAOE), Coordinación de Astrofísica, Luis Enrique Erro No. 1 Sta. Ma. Tonantzintla, Puebla, 72840 Mexico *Received 2013 October 31; accepted 2014 January 8; published 2014 January 27*

#### ABSTRACT

We present first results from the SCI-HI experiment, which we used to measure the all-sky-averaged 21 cm brightness temperature in the redshift range 14.8 < z < 22.7. The instrument consists of a single broadband sub-wavelength size antenna and a sampling system for real-time data processing and recording. Preliminary observations were completed in 2013 June at Isla Guadalupe, a Mexican biosphere reserve located in the Pacific Ocean. The data was cleaned to excise channels contaminated by radio frequency interference, and the system response was calibrated by comparing the measured brightness temperature to the Global Sky Model of the Galaxy and by independent measurement of Johnson noise from a calibration terminator. We present our results, discuss the cosmological implications, and describe plans for future work.

Astrophys.J. 782 (2014) L9, arXiv:1311.0014

## Conclusion

I. 21 cm brightness temperature a powerful tool to search for cosmic strings or other new physics. II. Noise is the problem. III. Wouthysen-Field effect (if it exists) would give a brighter above noise signature of cosmic strings

$$d\mathbf{I} = \frac{3n_0 A_{10} c^2 \phi}{8\pi\nu^2} \left[ -\mathbf{I} \left( 1 - \frac{n_1}{3n_0} \right) + \frac{n_1}{3n_0} \frac{2h\nu^3}{c^2} \right] ds$$
$$\equiv -\mathbf{I} d\tau_{\nu} + \frac{n_1}{3n_0} \frac{2h\nu^3}{c^2} ds$$

#### **Define the optical depth** $\tau_v$ through $d\tau_v$ as shown.

$$\mathbf{dT}_{\gamma} = \begin{bmatrix} -\mathbf{T}_{\gamma} + \mathbf{T}_{\mathbf{S}} \end{bmatrix} \, \mathbf{d}\tau_{\nu}$$

## Radial Velocity Gradient $\partial_r V_r$ $\Rightarrow$ Line Profile $\phi(\nu)$

• Gradient of velocity along line of sight gives a spread in frequency. As ray travels through column length  $\Delta s \equiv$  $\Delta r$  each frequency is equally likely  $\Rightarrow \phi(\nu) = (\Delta \nu)^{-1}$ 



- Cosmic Gas:  $\nu(\mathbf{r}) = \nu(\mathbf{r}_{o}) [\mathbf{1} - \mathbf{\Delta} \mathbf{r} (\mathbf{a} \mathbf{H}(\mathbf{a}) + \partial_{\mathbf{r}} \mathbf{v}_{\mathbf{r}}^{\mathbf{pec}}) / \mathbf{c}]$
- String Wake:  $\nu(\mathbf{r}) = \nu(\mathbf{r_o}) [\mathbf{1} - \mathbf{\Delta r} (\mathbf{a} \mathbf{H}(\mathbf{a}) \sin^2 \theta + \partial_{\mathbf{r}} \mathbf{v_r^{pec}}) / \mathbf{c}]$

## **Cosmic Gas Temperature Evolution**



Heats via γ+e<sup>-</sup> scattering
Cools via Hubble expansion
z > 300 : residual e<sup>-</sup> couple hydrogen gas to CMB.
300 > z > 150: Compton heating becomes inefficient at z ~ 300 and decouples by z ~ 150.
z<150: hydrogen gas is adiabatically expanding

Up until  $z \sim 80 T_S$  is collisionally coupled to  $T_K$ . After that atomic collisions become rare and  $T_S \rightarrow T_{\gamma}$  through absorption.

 $\delta T_{b} < 0$  until reionization.

### **Cosmic Strings Scaling Solution**



- Average number of long strings ranges from 1 to 10 per Hubble volume.
- Wake's initial physical size
  - ~  $L_{H}(1 \times 1 \times 4\pi G\mu)$
- Wake lengths Hubble expand.
- Wake width grows by gravitational accretion.

Image: by B.Allen & E.P.Shellard, from Cambridge Cosmology Cosmic Strings et al. public web site



Stars formation generates Lyman alpha, but also X rays which heat the cosmic gas.

Figure from Pritchard & Loeb 2010