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Observables
►CMB power spectrum. Includes recombination and post-

recombination physics. Strongest limit on allowed fraction of strings, 
improved by Planck  

►Non Gaussianity in CMB maps. Search for signatures of post-
recombination Doppler shift induced by moving strings. Strongest 
limit also from Planck (see talk by Paul Shellard)

►CMB B modes. Defects produce comparable scalar, vector and tensor 
fluctuations. (see talk by Robert Brandenberger)

►21 cm (see talk by Robert Brandenberger)
►Gravitational lensing (not discussed here)
►Pulsar timing/gravitational waves. Stochastic background from loops, 

waves from cusps (see talk by Richard Battye)
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String Evolution
►Perturbations from strings are active, so their evolution is key to 

understanding CMB anisotropies 
►Strings evolve toward self-similar scaling regime 
►Average properties of network are (nearly) constant with time
►Dynamics can be studied using numerical simulations
►Two approaches - Nambu and Abelian-Higgs models
►Both have advantages and disadvantages 
►Main issue is dynamical range - assumptions have to be made in 

either case  
►Will present Planck constraints for each case
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Nambu Model
►Thin string approximation
►Ignore radiation back reaction
►Impose reconnection by hand
►Network characterised by 

correlation length L
►Energy density is

►Observationally, string tension µ is 
main quantity of interest

►Find scaling solution L ~ t
►Make measurements of correlation 

length, velocity, small scale 
structure (wiggliness) ......

or

Ũ!!" , T̃!"/! , #10$

where !!!(% ,&) is, in general, some function of time and
the coordinate along the length of the smoothed string. The
energy-momentum tensor of a wiggly string viewed by an
observer who cannot resolve the wiggly structure is then ob-
tained by substituting Eqs. #10$ into Eq. #3$:
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Next, we use this expression to calculate the stress-energy
of a string network.

III. STRING NETWORK

A. Parameters of the network

The string network at any time can be characterized by a
single length scale, the correlation length L, defined by
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where , is the energy density in the string network. It will be
convenient to work with the comoving correlation length l
!L/a .
The expansion stretches the strings, thus increasing the

energy density. At the same time, long strings reconnnect
and chop off loops which later decay. The evolution of l
including only these two competing processes is -13,14,19.
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where v is the rms string velocity, c̃ is the loop chopping
efficiency and k̃ is the effective curvature of the strings. The
values of c̃ and k̃ in radiation and matter eras are suggested
in -19.. We use the same scheme as in Ref. -3. to interpolate
between these values through the radiation-matter transition:
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where we take cr!0.23, cm!0.18, kr!0.17, km!0.49, g
!300 and a(&) is normalized so that a!1 today.1

B. Model of the network

Here we closely follow the model described in -2,3..
The basic picture is that the string network is represented

by a collection of uncorrelated, straight string segments mov-
ing with random, uncorrelated velocities. All the segments
are assumed to be produced at some early epoch. At every
subsequent epoch, a certain fraction of the number of seg-
ments decay in a way that maintains network scaling. This
picture of the network is depicted in Fig. 1.
The comoving length, l, of each segment at any time is

taken to be equal to the correlation length of the network
defined below Eq. #11$. The positions of the segments are
drawn from a uniform distribution in space and their orien-
tations are chosen from a uniform distribution on a two
sphere. The segment speeds are fixed to be given by the
solution of Eq. #13$ while the direction of the velocity is
taken to be uniformly distributed in the plane perpendicular
to the string orientation.2 In principle, this constraint on the
velocity does not remain valid when the strings are wiggly
since the wiggles can impart a longitudinal velocity to the
segments. However, as explained below, the longitudinal ve-
locities are expected to be much smaller than the transverse
velocities and hence will be neglected.

1This choice of the value of g along with our normalization for a
leads to the same time dependence of v and l as in -3.. Normalizing
a so that a!1 at equality would require a much smaller value, e.g.
g/0.1, as reported in -3..
2We have also performed a few simulations where we drew the
velocities from a Gaussian distribution as in Ref. -2., but these did
not lead to significantly different results.

FIG. 1. A schematic picture of the string network model. All
string segments #depicted by solid circles$ are born at an early ep-
och and then decay at various later times. The segments are labeled
by the index m and the decay times are shown as numbers along the
& axis. In certain cosmologies, it is possible that some string seg-
ments never decay.
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VOS Model
►VOS = Velocity One-Scale model
►Expansion stretches strings, long strings reconnect and loops decay
►From Nambu action  Loop production, calibrated 

from simulations
Curvature term, proportional 

to RMS velocity v

networks can be approximated by a zero-width Nambu-
Goto string limit. With some additional input from field
theory to describe the result of string intercommutations
[33,34], this has allowed high-resolution simulations of
Nambu-Goto strings in realistic cosmologies [35–39].
Comparing numerical results with analytic approaches, it
has also been realized that key features of the complicated
network dynamics can be captured by surprisingly simple
analytic models describing the string network by only a
handful of macroscopic variables.

In this approach, one starts with the assumption (justi-
fied by simulations) that the string network has a random
walk structure, so it can be characterized-on large scales-by a
correlation length L quantifying the average length of string
segments and the average separation between them.1

Similarly, string motion can be described by a rms velocity,
v, of string segments. These two variables satisfy macro-
scopic equations ofmotion derived directly from theNambu-
Goto action after averaging over the worldsheet and
introducing a phenomenological interaction term [40–43]

1
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¼ ð1þ v2ÞHþ ~cv
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dv

dt
¼ ð1% v2Þ

! ~k
L
% 2Hv
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where H is the Hubble function, H ¼ _a=a, aðtÞ is the scale
factor and an overdot represents the derivativewith respect to
physical time t. The parameter ~c is a constant quantifying
energy loss due to loop production and can be calibrated by
comparison to simulations. Finally, the curvature parameter ~k
indirectly encodes information about the small-scale struc-
ture on strings and can be expressed in terms of v. For
relativistic strings we have [43]

~k ¼ 2
ffiffiffi
2
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"
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Equations (1)–(3) form the velocity-dependent one-scale
(VOS) model, and have been shown to be in remarkable
agreement with Nambu-Goto and field theory simulations
for the simplest of cosmic string models. Writing the corre-
lation length in terms of a new variable ",

L ¼ "t; (4)

and expressing theHubble function in terms of the expansion
parameter #, such that aðtÞ / t#, one finds that this system
has the scaling solution
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which is the generic attractor. In comoving units, the corre-
lation length is then

l ¼ L

a
¼ $%; (7)

where % is the comoving horizon (or alternatively conformal
time). Since in a given era (# ¼ const, equal to 1/2 and 2/3 in
the radiation and matter eras, respectively) the physical
horizon is dH ¼ a% ¼ t=ð1% #Þ, the relation between "
and $ is

$ ¼ "ð1% #Þ: (8)

For string networks of higher complication, more
sophisticated VOS models can be constructed which
include additional parameters. For example, superconduct-
ing strings [44] carry currents described by a charge
parameter [45], while cosmic superstrings [12,13] can be
modeled as a collection of several network components,
each with a different correlation length, velocity and loop
production efficiency, as well as several extra interaction
coefficients describing the formation of string junctions
[46–49]. The generalization of our methods to such net-
works will be the subject of a follow-up publication.
Here, we will consider one extra parameter & describing

the effect of short-scale wiggles on the string energy and
tension, thus affecting the UETC. To a first approximation,
the VOS equations do not depend directly on&, as the main
effects of short-scale structure are already captured by ~k in
Eq. (3). More sophisticated ‘‘wiggly’’ models exist [50],
but the VOS equations above are sufficient to reproduce
simulation results with respect to string correlation lengths
and velocities. The parameter & can be readily obtained
by Nambu-Goto simulations. Note that, physically,& and ~k
must be implicitly related, but a quantitative formula is
not known.
The easiest way to describe the string wiggliness & is by

writing the string energy-momentum tensor as
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where U is the string energy per unit length and T the
string tension. Lorentz invariance requires U ¼ T & '.
However, if short-scale wiggles cannot be resolved, this
has the effect of increasing the string energy per unit length
and reducing the tension [51,52] in such a way that their
product remains constant2

1For a random walk, these two length scales effectively
coincide, and in simulations of the simplest models of strings
they are found to be in good numerical agreement.

2This is also the case if Lorentz invariance is broken at a
fundamental level, e.g., in superconducting strings [53].
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parameter [45], while cosmic superstrings [12,13] can be
modeled as a collection of several network components,
each with a different correlation length, velocity and loop
production efficiency, as well as several extra interaction
coefficients describing the formation of string junctions
[46–49]. The generalization of our methods to such net-
works will be the subject of a follow-up publication.
Here, we will consider one extra parameter & describing

the effect of short-scale wiggles on the string energy and
tension, thus affecting the UETC. To a first approximation,
the VOS equations do not depend directly on&, as the main
effects of short-scale structure are already captured by ~k in
Eq. (3). More sophisticated ‘‘wiggly’’ models exist [50],
but the VOS equations above are sufficient to reproduce
simulation results with respect to string correlation lengths
and velocities. The parameter & can be readily obtained
by Nambu-Goto simulations. Note that, physically,& and ~k
must be implicitly related, but a quantitative formula is
not known.
The easiest way to describe the string wiggliness & is by

writing the string energy-momentum tensor as
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where U is the string energy per unit length and T the
string tension. Lorentz invariance requires U ¼ T & '.
However, if short-scale wiggles cannot be resolved, this
has the effect of increasing the string energy per unit length
and reducing the tension [51,52] in such a way that their
product remains constant2

1For a random walk, these two length scales effectively
coincide, and in simulations of the simplest models of strings
they are found to be in good numerical agreement.

2This is also the case if Lorentz invariance is broken at a
fundamental level, e.g., in superconducting strings [53].
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networks can be approximated by a zero-width Nambu-
Goto string limit. With some additional input from field
theory to describe the result of string intercommutations
[33,34], this has allowed high-resolution simulations of
Nambu-Goto strings in realistic cosmologies [35–39].
Comparing numerical results with analytic approaches, it
has also been realized that key features of the complicated
network dynamics can be captured by surprisingly simple
analytic models describing the string network by only a
handful of macroscopic variables.

In this approach, one starts with the assumption (justi-
fied by simulations) that the string network has a random
walk structure, so it can be characterized-on large scales-by a
correlation length L quantifying the average length of string
segments and the average separation between them.1

Similarly, string motion can be described by a rms velocity,
v, of string segments. These two variables satisfy macro-
scopic equations ofmotion derived directly from theNambu-
Goto action after averaging over the worldsheet and
introducing a phenomenological interaction term [40–43]
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; (1)
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¼ ð1% v2Þ

! ~k
L
% 2Hv

"
; (2)

where H is the Hubble function, H ¼ _a=a, aðtÞ is the scale
factor and an overdot represents the derivativewith respect to
physical time t. The parameter ~c is a constant quantifying
energy loss due to loop production and can be calibrated by
comparison to simulations. Finally, the curvature parameter ~k
indirectly encodes information about the small-scale struc-
ture on strings and can be expressed in terms of v. For
relativistic strings we have [43]
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Equations (1)–(3) form the velocity-dependent one-scale
(VOS) model, and have been shown to be in remarkable
agreement with Nambu-Goto and field theory simulations
for the simplest of cosmic string models. Writing the corre-
lation length in terms of a new variable ",

L ¼ "t; (4)

and expressing theHubble function in terms of the expansion
parameter #, such that aðtÞ / t#, one finds that this system
has the scaling solution
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which is the generic attractor. In comoving units, the corre-
lation length is then

l ¼ L
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¼ $%; (7)

where % is the comoving horizon (or alternatively conformal
time). Since in a given era (# ¼ const, equal to 1/2 and 2/3 in
the radiation and matter eras, respectively) the physical
horizon is dH ¼ a% ¼ t=ð1% #Þ, the relation between "
and $ is

$ ¼ "ð1% #Þ: (8)

For string networks of higher complication, more
sophisticated VOS models can be constructed which
include additional parameters. For example, superconduct-
ing strings [44] carry currents described by a charge
parameter [45], while cosmic superstrings [12,13] can be
modeled as a collection of several network components,
each with a different correlation length, velocity and loop
production efficiency, as well as several extra interaction
coefficients describing the formation of string junctions
[46–49]. The generalization of our methods to such net-
works will be the subject of a follow-up publication.
Here, we will consider one extra parameter & describing

the effect of short-scale wiggles on the string energy and
tension, thus affecting the UETC. To a first approximation,
the VOS equations do not depend directly on&, as the main
effects of short-scale structure are already captured by ~k in
Eq. (3). More sophisticated ‘‘wiggly’’ models exist [50],
but the VOS equations above are sufficient to reproduce
simulation results with respect to string correlation lengths
and velocities. The parameter & can be readily obtained
by Nambu-Goto simulations. Note that, physically,& and ~k
must be implicitly related, but a quantitative formula is
not known.
The easiest way to describe the string wiggliness & is by

writing the string energy-momentum tensor as
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where U is the string energy per unit length and T the
string tension. Lorentz invariance requires U ¼ T & '.
However, if short-scale wiggles cannot be resolved, this
has the effect of increasing the string energy per unit length
and reducing the tension [51,52] in such a way that their
product remains constant2

1For a random walk, these two length scales effectively
coincide, and in simulations of the simplest models of strings
they are found to be in good numerical agreement.

2This is also the case if Lorentz invariance is broken at a
fundamental level, e.g., in superconducting strings [53].
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networks can be approximated by a zero-width Nambu-
Goto string limit. With some additional input from field
theory to describe the result of string intercommutations
[33,34], this has allowed high-resolution simulations of
Nambu-Goto strings in realistic cosmologies [35–39].
Comparing numerical results with analytic approaches, it
has also been realized that key features of the complicated
network dynamics can be captured by surprisingly simple
analytic models describing the string network by only a
handful of macroscopic variables.

In this approach, one starts with the assumption (justi-
fied by simulations) that the string network has a random
walk structure, so it can be characterized-on large scales-by a
correlation length L quantifying the average length of string
segments and the average separation between them.1

Similarly, string motion can be described by a rms velocity,
v, of string segments. These two variables satisfy macro-
scopic equations ofmotion derived directly from theNambu-
Goto action after averaging over the worldsheet and
introducing a phenomenological interaction term [40–43]
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where H is the Hubble function, H ¼ _a=a, aðtÞ is the scale
factor and an overdot represents the derivativewith respect to
physical time t. The parameter ~c is a constant quantifying
energy loss due to loop production and can be calibrated by
comparison to simulations. Finally, the curvature parameter ~k
indirectly encodes information about the small-scale struc-
ture on strings and can be expressed in terms of v. For
relativistic strings we have [43]
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Equations (1)–(3) form the velocity-dependent one-scale
(VOS) model, and have been shown to be in remarkable
agreement with Nambu-Goto and field theory simulations
for the simplest of cosmic string models. Writing the corre-
lation length in terms of a new variable ",

L ¼ "t; (4)

and expressing theHubble function in terms of the expansion
parameter #, such that aðtÞ / t#, one finds that this system
has the scaling solution

" ¼
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which is the generic attractor. In comoving units, the corre-
lation length is then

l ¼ L
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¼ $%; (7)

where % is the comoving horizon (or alternatively conformal
time). Since in a given era (# ¼ const, equal to 1/2 and 2/3 in
the radiation and matter eras, respectively) the physical
horizon is dH ¼ a% ¼ t=ð1% #Þ, the relation between "
and $ is

$ ¼ "ð1% #Þ: (8)

For string networks of higher complication, more
sophisticated VOS models can be constructed which
include additional parameters. For example, superconduct-
ing strings [44] carry currents described by a charge
parameter [45], while cosmic superstrings [12,13] can be
modeled as a collection of several network components,
each with a different correlation length, velocity and loop
production efficiency, as well as several extra interaction
coefficients describing the formation of string junctions
[46–49]. The generalization of our methods to such net-
works will be the subject of a follow-up publication.
Here, we will consider one extra parameter & describing

the effect of short-scale wiggles on the string energy and
tension, thus affecting the UETC. To a first approximation,
the VOS equations do not depend directly on&, as the main
effects of short-scale structure are already captured by ~k in
Eq. (3). More sophisticated ‘‘wiggly’’ models exist [50],
but the VOS equations above are sufficient to reproduce
simulation results with respect to string correlation lengths
and velocities. The parameter & can be readily obtained
by Nambu-Goto simulations. Note that, physically,& and ~k
must be implicitly related, but a quantitative formula is
not known.
The easiest way to describe the string wiggliness & is by

writing the string energy-momentum tensor as
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where U is the string energy per unit length and T the
string tension. Lorentz invariance requires U ¼ T & '.
However, if short-scale wiggles cannot be resolved, this
has the effect of increasing the string energy per unit length
and reducing the tension [51,52] in such a way that their
product remains constant2

1For a random walk, these two length scales effectively
coincide, and in simulations of the simplest models of strings
they are found to be in good numerical agreement.

2This is also the case if Lorentz invariance is broken at a
fundamental level, e.g., in superconducting strings [53].
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►For power law expansion              find attractor solution with scaling 

networks can be approximated by a zero-width Nambu-
Goto string limit. With some additional input from field
theory to describe the result of string intercommutations
[33,34], this has allowed high-resolution simulations of
Nambu-Goto strings in realistic cosmologies [35–39].
Comparing numerical results with analytic approaches, it
has also been realized that key features of the complicated
network dynamics can be captured by surprisingly simple
analytic models describing the string network by only a
handful of macroscopic variables.

In this approach, one starts with the assumption (justi-
fied by simulations) that the string network has a random
walk structure, so it can be characterized-on large scales-by a
correlation length L quantifying the average length of string
segments and the average separation between them.1

Similarly, string motion can be described by a rms velocity,
v, of string segments. These two variables satisfy macro-
scopic equations ofmotion derived directly from theNambu-
Goto action after averaging over the worldsheet and
introducing a phenomenological interaction term [40–43]

1

L

dL

dt
¼ ð1þ v2ÞHþ ~cv

2L
; (1)

dv

dt
¼ ð1% v2Þ

! ~k
L
% 2Hv

"
; (2)

where H is the Hubble function, H ¼ _a=a, aðtÞ is the scale
factor and an overdot represents the derivativewith respect to
physical time t. The parameter ~c is a constant quantifying
energy loss due to loop production and can be calibrated by
comparison to simulations. Finally, the curvature parameter ~k
indirectly encodes information about the small-scale struc-
ture on strings and can be expressed in terms of v. For
relativistic strings we have [43]
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Equations (1)–(3) form the velocity-dependent one-scale
(VOS) model, and have been shown to be in remarkable
agreement with Nambu-Goto and field theory simulations
for the simplest of cosmic string models. Writing the corre-
lation length in terms of a new variable ",

L ¼ "t; (4)

and expressing theHubble function in terms of the expansion
parameter #, such that aðtÞ / t#, one finds that this system
has the scaling solution

" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kð~kþ ~cÞ

4#ð1% #Þ

s
; (5)

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kð1% #Þ
#ð~kþ ~cÞ

vuut ; (6)

which is the generic attractor. In comoving units, the corre-
lation length is then

l ¼ L
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where % is the comoving horizon (or alternatively conformal
time). Since in a given era (# ¼ const, equal to 1/2 and 2/3 in
the radiation and matter eras, respectively) the physical
horizon is dH ¼ a% ¼ t=ð1% #Þ, the relation between "
and $ is

$ ¼ "ð1% #Þ: (8)

For string networks of higher complication, more
sophisticated VOS models can be constructed which
include additional parameters. For example, superconduct-
ing strings [44] carry currents described by a charge
parameter [45], while cosmic superstrings [12,13] can be
modeled as a collection of several network components,
each with a different correlation length, velocity and loop
production efficiency, as well as several extra interaction
coefficients describing the formation of string junctions
[46–49]. The generalization of our methods to such net-
works will be the subject of a follow-up publication.
Here, we will consider one extra parameter & describing

the effect of short-scale wiggles on the string energy and
tension, thus affecting the UETC. To a first approximation,
the VOS equations do not depend directly on&, as the main
effects of short-scale structure are already captured by ~k in
Eq. (3). More sophisticated ‘‘wiggly’’ models exist [50],
but the VOS equations above are sufficient to reproduce
simulation results with respect to string correlation lengths
and velocities. The parameter & can be readily obtained
by Nambu-Goto simulations. Note that, physically,& and ~k
must be implicitly related, but a quantitative formula is
not known.
The easiest way to describe the string wiggliness & is by

writing the string energy-momentum tensor as
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where U is the string energy per unit length and T the
string tension. Lorentz invariance requires U ¼ T & '.
However, if short-scale wiggles cannot be resolved, this
has the effect of increasing the string energy per unit length
and reducing the tension [51,52] in such a way that their
product remains constant2

1For a random walk, these two length scales effectively
coincide, and in simulations of the simplest models of strings
they are found to be in good numerical agreement.

2This is also the case if Lorentz invariance is broken at a
fundamental level, e.g., in superconducting strings [53].
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►More complicated VOS models can be constructed for superstrings, 
networks with junctions etc.   

►Will use comoving correlation length

(Kibble 1985, Martins and Shellard 1996/2000)
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VOS Parameters
►Simulations find network parameters vary between matter and 

radiation eras
►Density in radiation era is greater than in matter era
►Simulations of Martins and Shellard find

vmat = 0.60vrad = 0.65⇠rad = 0.13 ⇠mat = 0.21

►Ringeval et al find  
⇠rad = 0.16 ⇠mat = 0.19

►Strings also have small scale structure, or ‘wiggliness’
►Effective coarse grained energy momentum tensor gives rescaled 

mass per unit length 
►Estimated to be 

UT ¼ !2: (10)

Then, an effective ‘‘coarse-grained’’ energy-momentum
tensor can bewritten in the form of (9) with ‘‘renormalized’’
string energy density and tension parametrized through "
as follows:

U ¼ "!; T ¼ !

"
: (11)

As we will see, this parameter " enters directly into the
UETC through this effective energy-momentum tensor for
coarse-grained string segments.

B. Energy-momentum tensor from a single string

Let us consider a single straight segment of the string
network. We are free to orientate the wave vector as
k ¼ kk̂3, where k is its magnitude, in which case the real
component of the Fourier transform of the energy-
momentum tensor (9) becomes (e.g., Refs. [25,26])

!00 ¼
!"ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" v2

p sinðkX̂3#$=2Þ
kX̂3=2

cosð%þ k _̂X3v$Þ; (12)

!ij ¼
"
v2 _̂Xi

_̂Xj "
1" v2

"
X̂iX̂j

#
!00; (13)

where X̂ and _̂X are randomly orientated unit vectors sat-

isfying X̂ & _̂X ¼ 0 and i, j ¼ 1 . . . 3. The phase of the
Fourier mode is set by the location of the string, x0, where
% ¼ k & x0. One can then identify the scalar, vector and
tensor anisotropic stress by

!S ¼ ð2!33 "!11 "!22Þ=2; (14)

!V ¼ !13; (15)

!T ¼ !12: (16)

For each string segment this gives

2!S

!00
¼ v2ð3 _̂X3

_̂X3 " 1Þ " 1" v2

"2 ð3X̂3X̂3 " 1Þ; (17)

!V

!00
¼ v2 _̂X1

_̂X3 "
1" v2

"2 X̂1X̂3; (18)

!T

!00
¼ v2 _̂X1

_̂X2 "
1" v2

"2 X̂1X̂2: (19)

We choose X̂ to be the usual position vector in spherical
coordinates, i.e., X̂T ¼ ðsin& cos'; sin& sin'; cos&Þ. Given
the orthogonality of X̂ and _̂X, once X̂ is specified there is an

angle c from 0 to 2( which gives _̂X,

_̂X ¼
cos& cos' cosc " sin' sinc

cos& sin' cosc þ cos' sinc

" sin& cosc

2
664

3
775: (20)

We can then generalize to a network of strings comprising
many segments with different orientations by averaging
over angles.

C. Unconnected segment model

The USM framework [25,26] models the string network
as a set of uncorrelated straight segments, each moving
with random velocity. All segments are assumed to be
produced at some fixed initial time. Throughout cosmic
history a certain fraction of these segments decay at each
epoch in order to maintain scaling of the network. Since,
during scaling, the number density of strings falls as
nð$Þ / $"3, one needs to track an extremely large number
of segments in order to have of order one segment remain-
ing today.
To avoid tracking each segment, the USM consolidates

all string segments that decay at the same discretized epoch
$i into a single string. Specifically, the number of segments
which decay between conformal time $i"1 and $i is

Ndð$iÞ ¼ V½nð$i"1Þ " nð$iÞ(; (21)

where V is the simulation volume and nð$Þ the number
density of strings given by

nð$Þ ¼ Cð$Þ
ð#$Þ3 : (22)

The coefficient Cð$Þ is determined by requiring the total
number of strings at any time be equal to V=ð#$Þ3. In
Ref. [26] it was found to be approximately constant and
of order unity throughout the simulations performed.
The Ndð$iÞ string segments are then consolidated into a

single segment, which has an energy-momentum weightffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ndð$iÞ

p
. The total energy-momentum tensor is a sum of

these consolidated segments given by

!!) ¼
XK

i¼1

½Ndð$iÞ(1=2!i
!)T

offð$; $i; LfÞ; (23)

where !i
!) is the energy-momentum tensor of a single

segment i, K is the number of consolidated segments and
Toffð$; $i; LfÞ is a function that controls the rate of string
decay. This has the form

Toffð$; $i; LfÞ ¼

8
>>><
>>>:

1 $< Lf$i;
1
2 þ 1

4 ðy3 " 3yÞ Lf$i < $< $i;

0 $> $i;

(24)

where
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↵rad = 1.5 ↵mat = 1.9

(Carter 2000)
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►Lagrangian
►Solve equations of motion on 3D lattice 
►Extract unequal time correlator (UETC) of energy momentum tensor

►Radiation into propagating modes included
►However, simulation box sizes limited to ~ 300x string core width
►Requires slowing down rate of growth of core (pre 2014, s<1)
►Found only very small loop production - most of energy loss to 

radiation
►See no observed small scale structure 
►Similar network parameters in matter and radiation eras

Abelian Higgs
L = (Dµ�)

2 � 1

4
Fµ⌫F

µ⌫ � V (�)

y ¼ 2
lnðLf!i=!Þ
lnðLfÞ

$ 1: (25)

Segments start to decay at Lf!i and have disappeared
completely at !i. The parameter Lf < 1 therefore controls
how fast the segments decay, and approximates the
Heaviside step function when Lf ! 1. The value of
this parameter is less well understood from Nambu-Goto
simulations. In general, higher Lf results in less power
in the CMB power spectrum [25,26] for a fixed string
tension G".

D. Analytic expressions

To compute the UETC analytically we integrate over all
strings in the network

h!ðk; !1Þ!ðk; !2Þi ¼
2fð!1; !2;#; LfÞ

16$3

%
Z 2$

0
d%

Z $

0
sin&d&

Z 2$

0
dc

%
Z 2$

0
d'!ðk; !1Þ!ðk; !2Þ; (26)

where by! we mean!00,!
S,!V ,!T and fð!1; !2;#; LfÞ

is a scaling factor associated with the decrease in the
number density and the decay of strings (see below). The
factor of 2 in the numerator arises from us only considering
the real part of the UETC. Three of the integrals can be
performed to give the remaining & integral in terms of
Bessel functions. Some of the resulting terms do not have
compact analytic expressions, so we need to make use of
series expansions. In each case we can write the remaining
& integral as the sum

h!ðk; !1Þ!ðk; !2Þi ¼
fð!1; !2;#; LfÞ"2

k2ð1$ v2Þ

%
X6

i¼1

Ai½Iiðx$;(Þ $ Iiðxþ;(Þ(; (27)

where the relevant integral identities Iiðx);(Þ are given in
the Appendix, ( ¼ kj!1 $ !2jv, x1;2 ¼ k#!1;2 and x) ¼
ðx1 ) x2Þ=2. For each scalar, vector and tensor UETC we
write down the amplitude Ai of each integral component in
the Appendix.

We will also be interested in certain asymptotic limits of
the UETC. For completeness we write down the small x
limit,

h!ðk; !1Þ!ðk; !2Þi *
fð!1; !2;#; LfÞ"2

k2ð1$ v2Þ B: (28)

Finally, we are also interested in the equal time correlator
(ETC), so that x1 ¼ x2 ¼ xþ ¼ x and x$ ¼ ( ¼ 0. In this
case we write the exact expression

h!ðk; !Þ!ðk; !Þi ¼ fð!; !;#; LfÞ"2

k2ð1$ v2Þ C: (29)

The B and C coefficients are also given in the Appendix.
Equations (27)–(29) form the basis of our fast UETC code.

E. Scaling factor

In the above we introduced the scaling factor
fð!1; !2;#; LfÞ. If we assume the network consists of
only a single string whose number density per simulation
volume is fixed and the string does not decay, then from
(23) in the USM !") ¼ !1

"), while analytically we can
set fð!1; !2;#; LfÞ ¼ 1. Next, we turn on the scaling and
decay of strings. This means in the USM the UETC is
given by

h!")ðk; !1Þ!(*ðk; !2Þi ¼ h!1
")ðk; !1Þ!1

(*ðk; !2Þi

%
XK

i¼1

Ndð!iÞToffð!1; !i; LfÞ

% Toffð!2; !i; LfÞ; (30)

since h!i!ji is equal to h!1!1i for i ¼ j and 0 for i ! j.
Increasing the number of segments such that K ! 1 then
the sum when Lf ! 1 can be evaluated to give Cð!Þ ! 1
[defined in Eq. (22)]. This gives the scaling factor

fð!1; !2;#; Lf ! 1Þ ¼ 1

½#Maxð!1; !2Þ(3
: (31)

The 0< Lf < 1 scaling factor is much more lengthy but is
possible to write down analytically. For the purposes of our
work we assume the strings segments decay instantane-
ously and set Lf ! 1.

F. Comparison with simulations

The expressions for the UETCs given in the Appendix
have been coded in a self-contained FORTRAN 90 mod-
ule. In this code, we make use of asymptotic limits to
improve speed and accuracy. For small x1 and x2, we use
the small x expansion (the B coefficients), thereby elimi-
nating the need to evaluate trigonometric functions or
perform a series expansion of spherical Bessel functions.
For x1 * x2, we use the form of the ETC (the C coeffi-
cients), as the amplitudes Ai contain terms / 1=(2, which
diverge when x1 ¼ x2 (this divergence in the Ai coeffi-
cients vanishes when fully expanding out the integral in
this limit).
In all other cases we perform the sum of integral com-

ponents, tuning the number of terms in the spherical Bessel
series expansions which are required for sufficient accu-
racy, given x1 and x2 (in general larger x1 and x2 require
more terms). A slight caveat here is that the individual
terms of the series expansion can become much larger
than the total sum, and for x1 or x2 greater than +30 loss
of accuracy can occur due to the limitation of double
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123513-5

⇠ = 0.3 v = 0.5
►More work required to resolve differences with Nambu model

(Hindmarsh et al 2009)

(Bevis et al)
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CMB Anisotropies
►Key ingredient is the UETC 
►Use stiff source approximation 

Gµ⌫ = 8⇡GTµ⌫ �Gµ⌫ = 8⇡G (�Tµ⌫ + ✓µ⌫)

String energy momentum tensor

►Can estimate UETC directly from simulations, and use as sources in 
CMB codes

►For thin strings there is a useful intermediate framework called 
Unconnected Segment Model (USM) 

►Model strings are ensemble of uncorrelated straight segments, each 
moving with random velocity

►Inputs are correlation length, 
velocity and wiggliness, as measured 
from simulations 

(Vincent et al, Albrecht et al, Pogosian and Vachaspati)
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Mimic Model
►Mimic model computed with USM, choosing parameters to more 

closely resemble Abelian-Higgs

sharp peak at around ‘! 500, whereas the AH spectrum
has a lower and broader peak, and falls off very sharply at
high ‘. It is not necessary for the string spectrum to be
known to the level of precision of the inflationary compo-
nent, since it is constrained to be <10% of the total
anisotropy. However, the discrepancy illustrated here is
larger than is acceptable and it leads to important quanti-
tative differences when each of the spectra are applied to
the data.

The spectrum computed using the USM is not unique,
being a function of the parameters, and, in particular, the
first CMB spectrum computed using it [31] looks very
similar to that computed from the Abelian-Higgs simula-
tions. This first spectrum just used a single, constant value
for ! and v, and ignored the effects of the matter-radiation
transition and small-scale structure, that is, it had " ¼ 1. It
seems plausible that it might be possible to compute an AH
‘‘mimic’’ model using the USM (model B). In order to
investigate this we ran a suite of simulations of the USM
with 3 parameters, !, v, and ", all assumed to be constant
with time, and then minimized the residuals to the true AH
spectrum taking into account the decomposition into the
scalar, vector and tensor (SVT) modes, all of which are
present in cosmic string spectra. We found that ! ¼ 0:35,
v ¼ 0:4c, and " ¼ 1:05 gave the best fit. These are quite
close to the values computed from the AH model simula-
tions discussed earlier. The spectrum created using model
B is compared to that from the AH model simulations in
the right hand panel of Fig. 1. We see that there is remark-
ably good agreement between the spectra and that the
values of G#=c2 required to achieve the observed level
of fluctuations are very similar. This suggests that the

discrepancy in the spectra between the USM used to de-
scribe the Nambu simulations and that from the AH model
simulations is mainly due to the computed correlation
properties, and the differences in the simulation tech-
niques, not the subsequent methods used to infer the
CMB spectrum. We have also computed the CDM power
spectrum for both string models, but these are subdominant
compared to the inflationary component when normalized
to the observed large angle CMB amplitude [22,31]. Since
the string contribution is limited to <10% of the total
anisotropy, the CDM power spectrum from strings is com-
pletely subdominant.
It is worth investigating what are the primary reasons for

the differences between the Nambu and AH spectra. In
Fig. 2 we have first removed the matter-radiation transi-
tion, making the spectrum just a function of single values
of !, v and ". We have then varied each of the three
parameters relative to the AH mimic model. It is clear
that the most significant reason for the discrepancy is the

FIG. 2 (color online). A montage of plots which show the
dependence of the string spectrum on parameters of the USM.
In each case the solid and dotted lines are the Nambu and AH
mimic models, respectively, from Fig. 1. In all but the top left
plot we have varied the one parameter keeping all the others the
same as in the AH mimic model: (top left) the dashed line is the
USM spectrum with ! ¼ 0:13, v ¼ 0:65c and " ¼ 1:9 but no
matter-radiation transition; (top right) the short-dashed line has
! ¼ 0:2 and the long-dashed line has ! ¼ 0:5; (bottom left) the
short-dashed line has v ¼ 0:0c and the long-dashed line has v ¼
0:8c; (bottom right) the short-dashed line has " ¼ 1:5 and the
long-dashed line " ¼ 1:9.

FIG. 1 (color online). (Left) Comparison of cosmic string
power spectra computed with the Unconnected Segment
Model (USM) using the Nambu—model A—(solid line) and
AH mimic—model B—(dotted line) parameters. Spectra have
been normalized to the WMAP value of C10, giving
G#=10#6c2 ¼ 1:18 for the Nambu model and 1.91 for the AH
mimic. (Right) Comparison of scalar, vector and tensor modes
for the USM AH mimic (solid line) parameters and the actual
AH spectra from simulations (dotted line) [25]. The former has
G#=10#6c2 ¼ 1:91, and the latter 2.04. From top-to-bottom at
low ‘ the ordering of the curves is the total power, then the
anisotropy from vectors, scalars and tensors, respectively.

UPDATED CONSTRAINTS ON THE COSMIC STRING TENSION PHYSICAL REVIEW D 82, 023521 (2010)

023521-3

Total power
►Turn off evolution of network 

parameters between matter and 
radiation eras

►Choose 
►Encouragingly find closer agreement 

between spectra
►Remember Nambu suffers less of an 

issue with dynamical range

⇠ = 0.35 v = 0.4 ↵ = 1.05

►Abelian-Higgs has advantage of including radiation
►Even with simple physics USM does a good job of fitting 

both!

Health warning: CMBACT v3
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Power Spectrum
Planck Collaboration: Cosmic strings and other topological defects
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Fig. 3. Cosmic string power spectra used in this analy-
sis: NAMBU (black dashed), AH-mimic (blue dotted)
and AH (red solid). The spectra have been normalized
to equal power at ` = 10. The spectra are normal-
ized the observed WMAP7 value at ` = 10 and have
Gµ/c2 = 1.17 ⇥ 10�6, 1.89 ⇥ 10�6 and 2.04 ⇥ 10�6 re-
spectively. Note that the limits discussed in this paper
mean that the CMB spectra presented here are less than
3% of the overall power spectrum amplitude and hence
the di↵erences observed at high ` do not have a much
e↵ect.
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Fig. 4. Comparison between global texture (black
dashed) and semilocal (blue dotted) string power spec-
tra and the AH field theory strings (red solid), normal-
ized to unity at ` = 10. As expected, the SL spectrum
lies in between the TX and the AH spectra. The AH
spectrum was recomputed for the Planck cosmological
model with sources from Bevis et al. (2010), and the SL
and TX spectra were taken from Urrestilla et al. (2008).

There are two USM-based models that we will use in this
analysis which we believe span the realistic possibilities—we
note a more general approach marginalizing over three string
parameters is proposed in Foreman et al. (2011) (see also re-
cent work in Avgoustidis et al. 2012). The first USM model,
which we will refer to as NAMBU, is designed to model
the observational consequences of simulations of cosmic string
simulations performed in the Nambu-Goto approximation. In
these simulations the scaling regime is di↵erent in the radiation
and matter eras, with (⇠, hv2i1/2/c, �)rad = (0.13, 0.65, 1.9) and
(⇠, hv2i1/2/c, �)mat = (0.21, 0.60, 1.5) and the extrapolation be-
tween the two is modelled by using the velocity dependent one-
scale model (Martins & Shellard 1996). In the second, which
we will refer to as AH-mimic, we attempt to model the field the-
ory simulations using the Abelian-Higgs model described below,
with (⇠, hv2i1/2/c, �) = (0.3, 0.5, 1) independent of time.

The other approach that we will consider is to measure
the UETC directly from a simulation of cosmic strings in
the Abelian-Higgs model, which we will refer to as AH. The
Abelian Higgs model involves a complex scalar field � and a
gauge field Aµ described earlier Eq. (4), for which the dimen-
sionless coupling constants e and � are chosen with � = 2e2,
so that the characteristic scales of the magnetic and scalar en-
ergies are equal, (see Bevis et al. (2007b,a) for further details
about the model). We then simulate the evolution of the fields
on a grid, starting from random initial conditions designed to
mimic a phase transition, followed by a brief period of di↵usive
evolution, to rapidly reach a scaling solution expected to be typ-
ical of the configuration found long after the phase transition. As
the simulation is performed in comoving coordinates, the string
width is e↵ectively decreasing as time passes. To enlarge the dy-
namical range available, we partially compensate this shrinking
with an artificial string fattening. We perform runs for various

6

(USM)

(USM)
(Field theory)
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Power Spectrum
►Note: Amplitude set by mass per unit length
►Two primary contributions to spectrum - density perturbations at last 

scattering, Kaiser-Stebbins effect along line of sight
►Peak position set by correlation length at last scattering
►Why the difference between Nambu and Abelian-Higgs?
►Normalisation determined by correlation length
►Nambu model has more small scale power - smaller string correlation  

length in radiation era, by factor of ~1.6
►Different split into scalar, vector and tensors - small scale structure of 

strings

Cstring
` / (Gµ)2

Planck Collaboration: Cosmic strings and other topological defects
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Fig. 3. Cosmic string power spectra used in this analy-
sis: NAMBU (black dashed), AH-mimic (blue dotted)
and AH (red solid). The spectra have been normalized
to equal power at ` = 10. The spectra are normal-
ized the observed WMAP7 value at ` = 10 and have
Gµ/c2 = 1.17 ⇥ 10�6, 1.89 ⇥ 10�6 and 2.04 ⇥ 10�6 re-
spectively. Note that the limits discussed in this paper
mean that the CMB spectra presented here are less than
3% of the overall power spectrum amplitude and hence
the di↵erences observed at high ` do not have a much
e↵ect.
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Fig. 4. Comparison between global texture (black
dashed) and semilocal (blue dotted) string power spec-
tra and the AH field theory strings (red solid), normal-
ized to unity at ` = 10. As expected, the SL spectrum
lies in between the TX and the AH spectra. The AH
spectrum was recomputed for the Planck cosmological
model with sources from Bevis et al. (2010), and the SL
and TX spectra were taken from Urrestilla et al. (2008).

There are two USM-based models that we will use in this
analysis which we believe span the realistic possibilities—we
note a more general approach marginalizing over three string
parameters is proposed in Foreman et al. (2011) (see also re-
cent work in Avgoustidis et al. 2012). The first USM model,
which we will refer to as NAMBU, is designed to model
the observational consequences of simulations of cosmic string
simulations performed in the Nambu-Goto approximation. In
these simulations the scaling regime is di↵erent in the radiation
and matter eras, with (⇠, hv2i1/2/c, �)rad = (0.13, 0.65, 1.9) and
(⇠, hv2i1/2/c, �)mat = (0.21, 0.60, 1.5) and the extrapolation be-
tween the two is modelled by using the velocity dependent one-
scale model (Martins & Shellard 1996). In the second, which
we will refer to as AH-mimic, we attempt to model the field the-
ory simulations using the Abelian-Higgs model described below,
with (⇠, hv2i1/2/c, �) = (0.3, 0.5, 1) independent of time.

The other approach that we will consider is to measure
the UETC directly from a simulation of cosmic strings in
the Abelian-Higgs model, which we will refer to as AH. The
Abelian Higgs model involves a complex scalar field � and a
gauge field Aµ described earlier Eq. (4), for which the dimen-
sionless coupling constants e and � are chosen with � = 2e2,
so that the characteristic scales of the magnetic and scalar en-
ergies are equal, (see Bevis et al. (2007b,a) for further details
about the model). We then simulate the evolution of the fields
on a grid, starting from random initial conditions designed to
mimic a phase transition, followed by a brief period of di↵usive
evolution, to rapidly reach a scaling solution expected to be typ-
ical of the configuration found long after the phase transition. As
the simulation is performed in comoving coordinates, the string
width is e↵ectively decreasing as time passes. To enlarge the dy-
namical range available, we partially compensate this shrinking
with an artificial string fattening. We perform runs for various
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►     and      are randomly orientated unit vectors satisfying
►Phase     set by location of string  
►Orientated wave vector as             perform scalar, vector, tensor split 

►Let’s now revisit the USM. In existing codes (CMBACT) the UETC is 
not computed

►Rather an ensemble of source histories are created, then averaged 
to find power spectra 

►The EM tensor of a straight string segment is 

USM

UT ¼ !2: (10)

Then, an effective ‘‘coarse-grained’’ energy-momentum
tensor can bewritten in the form of (9) with ‘‘renormalized’’
string energy density and tension parametrized through "
as follows:

U ¼ "!; T ¼ !

"
: (11)

As we will see, this parameter " enters directly into the
UETC through this effective energy-momentum tensor for
coarse-grained string segments.

B. Energy-momentum tensor from a single string

Let us consider a single straight segment of the string
network. We are free to orientate the wave vector as
k ¼ kk̂3, where k is its magnitude, in which case the real
component of the Fourier transform of the energy-
momentum tensor (9) becomes (e.g., Refs. [25,26])

!00 ¼
!"ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" v2

p sinðkX̂3#$=2Þ
kX̂3=2

cosð%þ k _̂X3v$Þ; (12)

!ij ¼
"
v2 _̂Xi

_̂Xj "
1" v2

"
X̂iX̂j

#
!00; (13)

where X̂ and _̂X are randomly orientated unit vectors sat-

isfying X̂ & _̂X ¼ 0 and i, j ¼ 1 . . . 3. The phase of the
Fourier mode is set by the location of the string, x0, where
% ¼ k & x0. One can then identify the scalar, vector and
tensor anisotropic stress by

!S ¼ ð2!33 "!11 "!22Þ=2; (14)

!V ¼ !13; (15)

!T ¼ !12: (16)

For each string segment this gives

2!S

!00
¼ v2ð3 _̂X3

_̂X3 " 1Þ " 1" v2

"2 ð3X̂3X̂3 " 1Þ; (17)

!V

!00
¼ v2 _̂X1

_̂X3 "
1" v2

"2 X̂1X̂3; (18)

!T

!00
¼ v2 _̂X1

_̂X2 "
1" v2

"2 X̂1X̂2: (19)

We choose X̂ to be the usual position vector in spherical
coordinates, i.e., X̂T ¼ ðsin& cos'; sin& sin'; cos&Þ. Given
the orthogonality of X̂ and _̂X, once X̂ is specified there is an

angle c from 0 to 2( which gives _̂X,

_̂X ¼
cos& cos' cosc " sin' sinc

cos& sin' cosc þ cos' sinc

" sin& cosc

2
664

3
775: (20)

We can then generalize to a network of strings comprising
many segments with different orientations by averaging
over angles.

C. Unconnected segment model

The USM framework [25,26] models the string network
as a set of uncorrelated straight segments, each moving
with random velocity. All segments are assumed to be
produced at some fixed initial time. Throughout cosmic
history a certain fraction of these segments decay at each
epoch in order to maintain scaling of the network. Since,
during scaling, the number density of strings falls as
nð$Þ / $"3, one needs to track an extremely large number
of segments in order to have of order one segment remain-
ing today.
To avoid tracking each segment, the USM consolidates

all string segments that decay at the same discretized epoch
$i into a single string. Specifically, the number of segments
which decay between conformal time $i"1 and $i is

Ndð$iÞ ¼ V½nð$i"1Þ " nð$iÞ(; (21)

where V is the simulation volume and nð$Þ the number
density of strings given by

nð$Þ ¼ Cð$Þ
ð#$Þ3 : (22)

The coefficient Cð$Þ is determined by requiring the total
number of strings at any time be equal to V=ð#$Þ3. In
Ref. [26] it was found to be approximately constant and
of order unity throughout the simulations performed.
The Ndð$iÞ string segments are then consolidated into a

single segment, which has an energy-momentum weightffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ndð$iÞ

p
. The total energy-momentum tensor is a sum of

these consolidated segments given by

!!) ¼
XK

i¼1

½Ndð$iÞ(1=2!i
!)T

offð$; $i; LfÞ; (23)

where !i
!) is the energy-momentum tensor of a single

segment i, K is the number of consolidated segments and
Toffð$; $i; LfÞ is a function that controls the rate of string
decay. This has the form

Toffð$; $i; LfÞ ¼

8
>>><
>>>:

1 $< Lf$i;
1
2 þ 1

4 ðy3 " 3yÞ Lf$i < $< $i;

0 $> $i;

(24)

where
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with random velocity. All segments are assumed to be
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as a set of uncorrelated straight segments, each moving
with random velocity. All segments are assumed to be
produced at some fixed initial time. Throughout cosmic
history a certain fraction of these segments decay at each
epoch in order to maintain scaling of the network. Since,
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nð$Þ / $"3, one needs to track an extremely large number
of segments in order to have of order one segment remain-
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$i into a single string. Specifically, the number of segments
which decay between conformal time $i"1 and $i is

Ndð$iÞ ¼ V½nð$i"1Þ " nð$iÞ(; (21)

where V is the simulation volume and nð$Þ the number
density of strings given by

nð$Þ ¼ Cð$Þ
ð#$Þ3 : (22)

The coefficient Cð$Þ is determined by requiring the total
number of strings at any time be equal to V=ð#$Þ3. In
Ref. [26] it was found to be approximately constant and
of order unity throughout the simulations performed.
The Ndð$iÞ string segments are then consolidated into a

single segment, which has an energy-momentum weightffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ndð$iÞ
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string energy density and tension parametrized through "
as follows:
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As we will see, this parameter " enters directly into the
UETC through this effective energy-momentum tensor for
coarse-grained string segments.

B. Energy-momentum tensor from a single string

Let us consider a single straight segment of the string
network. We are free to orientate the wave vector as
k ¼ kk̂3, where k is its magnitude, in which case the real
component of the Fourier transform of the energy-
momentum tensor (9) becomes (e.g., Refs. [25,26])
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We can then generalize to a network of strings comprising
many segments with different orientations by averaging
over angles.
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as a set of uncorrelated straight segments, each moving
with random velocity. All segments are assumed to be
produced at some fixed initial time. Throughout cosmic
history a certain fraction of these segments decay at each
epoch in order to maintain scaling of the network. Since,
during scaling, the number density of strings falls as
nð$Þ / $"3, one needs to track an extremely large number
of segments in order to have of order one segment remain-
ing today.
To avoid tracking each segment, the USM consolidates

all string segments that decay at the same discretized epoch
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The coefficient Cð$Þ is determined by requiring the total
number of strings at any time be equal to V=ð#$Þ3. In
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of order unity throughout the simulations performed.
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As we will see, this parameter " enters directly into the
UETC through this effective energy-momentum tensor for
coarse-grained string segments.

B. Energy-momentum tensor from a single string

Let us consider a single straight segment of the string
network. We are free to orientate the wave vector as
k ¼ kk̂3, where k is its magnitude, in which case the real
component of the Fourier transform of the energy-
momentum tensor (9) becomes (e.g., Refs. [25,26])
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isfying X̂ & _̂X ¼ 0 and i, j ¼ 1 . . . 3. The phase of the
Fourier mode is set by the location of the string, x0, where
% ¼ k & x0. One can then identify the scalar, vector and
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We can then generalize to a network of strings comprising
many segments with different orientations by averaging
over angles.

C. Unconnected segment model

The USM framework [25,26] models the string network
as a set of uncorrelated straight segments, each moving
with random velocity. All segments are assumed to be
produced at some fixed initial time. Throughout cosmic
history a certain fraction of these segments decay at each
epoch in order to maintain scaling of the network. Since,
during scaling, the number density of strings falls as
nð$Þ / $"3, one needs to track an extremely large number
of segments in order to have of order one segment remain-
ing today.
To avoid tracking each segment, the USM consolidates

all string segments that decay at the same discretized epoch
$i into a single string. Specifically, the number of segments
which decay between conformal time $i"1 and $i is
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where V is the simulation volume and nð$Þ the number
density of strings given by
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The coefficient Cð$Þ is determined by requiring the total
number of strings at any time be equal to V=ð#$Þ3. In
Ref. [26] it was found to be approximately constant and
of order unity throughout the simulations performed.
The Ndð$iÞ string segments are then consolidated into a
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As we will see, this parameter " enters directly into the
UETC through this effective energy-momentum tensor for
coarse-grained string segments.

B. Energy-momentum tensor from a single string

Let us consider a single straight segment of the string
network. We are free to orientate the wave vector as
k ¼ kk̂3, where k is its magnitude, in which case the real
component of the Fourier transform of the energy-
momentum tensor (9) becomes (e.g., Refs. [25,26])
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where X̂ and _̂X are randomly orientated unit vectors sat-

isfying X̂ & _̂X ¼ 0 and i, j ¼ 1 . . . 3. The phase of the
Fourier mode is set by the location of the string, x0, where
% ¼ k & x0. One can then identify the scalar, vector and
tensor anisotropic stress by

!S ¼ ð2!33 "!11 "!22Þ=2; (14)

!V ¼ !13; (15)
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We can then generalize to a network of strings comprising
many segments with different orientations by averaging
over angles.

C. Unconnected segment model

The USM framework [25,26] models the string network
as a set of uncorrelated straight segments, each moving
with random velocity. All segments are assumed to be
produced at some fixed initial time. Throughout cosmic
history a certain fraction of these segments decay at each
epoch in order to maintain scaling of the network. Since,
during scaling, the number density of strings falls as
nð$Þ / $"3, one needs to track an extremely large number
of segments in order to have of order one segment remain-
ing today.
To avoid tracking each segment, the USM consolidates

all string segments that decay at the same discretized epoch
$i into a single string. Specifically, the number of segments
which decay between conformal time $i"1 and $i is

Ndð$iÞ ¼ V½nð$i"1Þ " nð$iÞ(; (21)

where V is the simulation volume and nð$Þ the number
density of strings given by

nð$Þ ¼ Cð$Þ
ð#$Þ3 : (22)

The coefficient Cð$Þ is determined by requiring the total
number of strings at any time be equal to V=ð#$Þ3. In
Ref. [26] it was found to be approximately constant and
of order unity throughout the simulations performed.
The Ndð$iÞ string segments are then consolidated into a

single segment, which has an energy-momentum weightffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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component of the Fourier transform of the energy-
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isfying X̂ & _̂X ¼ 0 and i, j ¼ 1 . . . 3. The phase of the
Fourier mode is set by the location of the string, x0, where
% ¼ k & x0. One can then identify the scalar, vector and
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We can then generalize to a network of strings comprising
many segments with different orientations by averaging
over angles.

C. Unconnected segment model

The USM framework [25,26] models the string network
as a set of uncorrelated straight segments, each moving
with random velocity. All segments are assumed to be
produced at some fixed initial time. Throughout cosmic
history a certain fraction of these segments decay at each
epoch in order to maintain scaling of the network. Since,
during scaling, the number density of strings falls as
nð$Þ / $"3, one needs to track an extremely large number
of segments in order to have of order one segment remain-
ing today.
To avoid tracking each segment, the USM consolidates

all string segments that decay at the same discretized epoch
$i into a single string. Specifically, the number of segments
which decay between conformal time $i"1 and $i is

Ndð$iÞ ¼ V½nð$i"1Þ " nð$iÞ(; (21)

where V is the simulation volume and nð$Þ the number
density of strings given by

nð$Þ ¼ Cð$Þ
ð#$Þ3 : (22)

The coefficient Cð$Þ is determined by requiring the total
number of strings at any time be equal to V=ð#$Þ3. In
Ref. [26] it was found to be approximately constant and
of order unity throughout the simulations performed.
The Ndð$iÞ string segments are then consolidated into a

single segment, which has an energy-momentum weightffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ndð$iÞ
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The decay of segments of the string network is accom-
plished by ‘‘turning off’’ the energy-momentum of a fraction
of the existing segments at every epoch. Each segment is
assigned a certain decay time, !m , where the index m labels
the individual segments. So the Fourier transform of the total
stress-energy of the network is the sum over the stress-
energies of all segments:

"#$%k! ,!&! '
m!1

N0

"#$
m %k! ,!&Toff%! ,!m&, %14&

where N0 is the initial number of segments, and Toff(! ,!m) is
a smooth function that turns off the mth string segment by
time !m .3 The functional form is taken to be (2)

Toff%! ,!m&!! 1 . . . !"L!m ,
1
2 # 1

4 %x3$3x & . . . L!m"!"!m ,

0 . . . !%!m ,
%15&

where

x!2
ln%L!m /!&

ln%L &
$1 %16&

and L"1 is a parameter that controls how fast the segments
decay.
The total energy of the string network in a volume V at

any time is

N#L!V*!
#V

L2
%17&

where N!N(!) is the total number of string segments at that
time, V!V0a3, a!1 at the present epoch and V0 is a con-
stant simulation volume. From Eq. %17& it follows that

N!
V

L3
!
V0
l3
. %18&

The comoving length l is approximately proportional to
the conformal time ! and implies that the number of strings
N(!) within the simulation volume V0 falls as !$3. To cal-
culate the CMB anisotropy we need to evolve the string net-
work over at least four orders of magnitude in cosmic expan-
sion. Hence we would have to start with N&1012 string
segments in order to have one segment left at the present
time. This is the main problem in directly dealing with the
expression for the energy-momentum tensor in Eq. %14&.
A way around this difficulty was suggested in Ref. (2).

The suggestion is to consolidate all string segments that de-

cay at the same epoch. Since the number of segments that
decay at the %discretized& conformal time ! i is

Nd%! i&!V(n%! i$1&$n%! i&) %19&

where n(!) is the number density of strings at time ! , the
‘‘consolidated string’’ decaying at ! i is taken to have weight:
!Nd(! i). %The assumption is that string segments that decay
at the same time act randomly, leading to the square root in
the weight&. The number of consolidated strings is of the
order of a few hundred and can be dealt with
computationally.4 This modified picture of the string network
is shown in Fig. 2.
Now we can choose !n to be equally spaced on a loga-

rithmic scale between !min and !max and write the energy-
momentum tensor as

"#$%k! ,!&!'
i!1

K

(Nd%! i&)
1/2"#$

i %k! ,!&Toff%! ,! i&#T#$

%20&

where K is the number of consolidated segments and T#$ is a
remainder that we have included and that we now explain.
The sum in Eq. %20& misses any string segments that have

not decayed by !max . The remainder T#$ is supposed to rep-
resent the contribution of these segments of strings. As in the

3In addition, Albrecht et al. introduce a function Ton which turns
on the segments at a very early time. This function is not a feature
of the model but only introduced to speed up the code. We have not
included Ton in our simulations.

4In addition to consolidating the string segments decaying at a
given time into a single ‘‘consolidated string’’ we have also tried
consolidating them into two, three and four strings. This did not
lead to any difference in the final results.

FIG. 2. The modified model of the string network. All strings
that decay at the same %discretized& time in Fig. 1 are consolidated
into one string segment and assigned a weight that is the square root
of the number of segments that the consolidated segment represents.
This works for all segments that decay by the end of the simulation
but will miss those segments that do not decay. In the present
scheme, the segments that will not have decayed by the end of the
simulation are consolidated into one string. The contribution of this
surviving segment is the remainder term in the expression for the
energy-momentum tensor in Eq. %20&.
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UT ¼ !2: (10)

Then, an effective ‘‘coarse-grained’’ energy-momentum
tensor can bewritten in the form of (9) with ‘‘renormalized’’
string energy density and tension parametrized through "
as follows:

U ¼ "!; T ¼ !

"
: (11)

As we will see, this parameter " enters directly into the
UETC through this effective energy-momentum tensor for
coarse-grained string segments.

B. Energy-momentum tensor from a single string

Let us consider a single straight segment of the string
network. We are free to orientate the wave vector as
k ¼ kk̂3, where k is its magnitude, in which case the real
component of the Fourier transform of the energy-
momentum tensor (9) becomes (e.g., Refs. [25,26])
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where X̂ and _̂X are randomly orientated unit vectors sat-

isfying X̂ & _̂X ¼ 0 and i, j ¼ 1 . . . 3. The phase of the
Fourier mode is set by the location of the string, x0, where
% ¼ k & x0. One can then identify the scalar, vector and
tensor anisotropic stress by

!S ¼ ð2!33 "!11 "!22Þ=2; (14)
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!T ¼ !12: (16)
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We choose X̂ to be the usual position vector in spherical
coordinates, i.e., X̂T ¼ ðsin& cos'; sin& sin'; cos&Þ. Given
the orthogonality of X̂ and _̂X, once X̂ is specified there is an
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We can then generalize to a network of strings comprising
many segments with different orientations by averaging
over angles.

C. Unconnected segment model

The USM framework [25,26] models the string network
as a set of uncorrelated straight segments, each moving
with random velocity. All segments are assumed to be
produced at some fixed initial time. Throughout cosmic
history a certain fraction of these segments decay at each
epoch in order to maintain scaling of the network. Since,
during scaling, the number density of strings falls as
nð$Þ / $"3, one needs to track an extremely large number
of segments in order to have of order one segment remain-
ing today.
To avoid tracking each segment, the USM consolidates

all string segments that decay at the same discretized epoch
$i into a single string. Specifically, the number of segments
which decay between conformal time $i"1 and $i is

Ndð$iÞ ¼ V½nð$i"1Þ " nð$iÞ(; (21)

where V is the simulation volume and nð$Þ the number
density of strings given by

nð$Þ ¼ Cð$Þ
ð#$Þ3 : (22)

The coefficient Cð$Þ is determined by requiring the total
number of strings at any time be equal to V=ð#$Þ3. In
Ref. [26] it was found to be approximately constant and
of order unity throughout the simulations performed.
The Ndð$iÞ string segments are then consolidated into a

single segment, which has an energy-momentum weightffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ndð$iÞ

p
. The total energy-momentum tensor is a sum of

these consolidated segments given by

!!) ¼
XK

i¼1

½Ndð$iÞ(1=2!i
!)T

offð$; $i; LfÞ; (23)

where !i
!) is the energy-momentum tensor of a single

segment i, K is the number of consolidated segments and
Toffð$; $i; LfÞ is a function that controls the rate of string
decay. This has the form

Toffð$; $i; LfÞ ¼

8
>>><
>>>:

1 $< Lf$i;
1
2 þ 1

4 ðy3 " 3yÞ Lf$i < $< $i;

0 $> $i;

(24)

where
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UT ¼ !2: (10)

Then, an effective ‘‘coarse-grained’’ energy-momentum
tensor can bewritten in the form of (9) with ‘‘renormalized’’
string energy density and tension parametrized through "
as follows:

U ¼ "!; T ¼ !

"
: (11)

As we will see, this parameter " enters directly into the
UETC through this effective energy-momentum tensor for
coarse-grained string segments.

B. Energy-momentum tensor from a single string

Let us consider a single straight segment of the string
network. We are free to orientate the wave vector as
k ¼ kk̂3, where k is its magnitude, in which case the real
component of the Fourier transform of the energy-
momentum tensor (9) becomes (e.g., Refs. [25,26])

!00 ¼
!"ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" v2

p sinðkX̂3#$=2Þ
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X̂iX̂j

#
!00; (13)

where X̂ and _̂X are randomly orientated unit vectors sat-

isfying X̂ & _̂X ¼ 0 and i, j ¼ 1 . . . 3. The phase of the
Fourier mode is set by the location of the string, x0, where
% ¼ k & x0. One can then identify the scalar, vector and
tensor anisotropic stress by
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We choose X̂ to be the usual position vector in spherical
coordinates, i.e., X̂T ¼ ðsin& cos'; sin& sin'; cos&Þ. Given
the orthogonality of X̂ and _̂X, once X̂ is specified there is an

angle c from 0 to 2( which gives _̂X,
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We can then generalize to a network of strings comprising
many segments with different orientations by averaging
over angles.

C. Unconnected segment model

The USM framework [25,26] models the string network
as a set of uncorrelated straight segments, each moving
with random velocity. All segments are assumed to be
produced at some fixed initial time. Throughout cosmic
history a certain fraction of these segments decay at each
epoch in order to maintain scaling of the network. Since,
during scaling, the number density of strings falls as
nð$Þ / $"3, one needs to track an extremely large number
of segments in order to have of order one segment remain-
ing today.
To avoid tracking each segment, the USM consolidates
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$i into a single string. Specifically, the number of segments
which decay between conformal time $i"1 and $i is
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where V is the simulation volume and nð$Þ the number
density of strings given by
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The coefficient Cð$Þ is determined by requiring the total
number of strings at any time be equal to V=ð#$Þ3. In
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Analytic UETC

y ¼ 2
lnðLf!i=!Þ
lnðLfÞ

$ 1: (25)

Segments start to decay at Lf!i and have disappeared
completely at !i. The parameter Lf < 1 therefore controls
how fast the segments decay, and approximates the
Heaviside step function when Lf ! 1. The value of
this parameter is less well understood from Nambu-Goto
simulations. In general, higher Lf results in less power
in the CMB power spectrum [25,26] for a fixed string
tension G".

D. Analytic expressions

To compute the UETC analytically we integrate over all
strings in the network

h!ðk; !1Þ!ðk; !2Þi ¼
2fð!1; !2;#; LfÞ

16$3

%
Z 2$

0
d%

Z $

0
sin&d&

Z 2$

0
dc

%
Z 2$

0
d'!ðk; !1Þ!ðk; !2Þ; (26)

where by! we mean!00,!
S,!V ,!T and fð!1; !2;#; LfÞ

is a scaling factor associated with the decrease in the
number density and the decay of strings (see below). The
factor of 2 in the numerator arises from us only considering
the real part of the UETC. Three of the integrals can be
performed to give the remaining & integral in terms of
Bessel functions. Some of the resulting terms do not have
compact analytic expressions, so we need to make use of
series expansions. In each case we can write the remaining
& integral as the sum

h!ðk; !1Þ!ðk; !2Þi ¼
fð!1; !2;#; LfÞ"2

k2ð1$ v2Þ

%
X6

i¼1

Ai½Iiðx$;(Þ $ Iiðxþ;(Þ(; (27)

where the relevant integral identities Iiðx);(Þ are given in
the Appendix, ( ¼ kj!1 $ !2jv, x1;2 ¼ k#!1;2 and x) ¼
ðx1 ) x2Þ=2. For each scalar, vector and tensor UETC we
write down the amplitude Ai of each integral component in
the Appendix.

We will also be interested in certain asymptotic limits of
the UETC. For completeness we write down the small x
limit,

h!ðk; !1Þ!ðk; !2Þi *
fð!1; !2;#; LfÞ"2

k2ð1$ v2Þ B: (28)

Finally, we are also interested in the equal time correlator
(ETC), so that x1 ¼ x2 ¼ xþ ¼ x and x$ ¼ ( ¼ 0. In this
case we write the exact expression

h!ðk; !Þ!ðk; !Þi ¼ fð!; !;#; LfÞ"2

k2ð1$ v2Þ C: (29)

The B and C coefficients are also given in the Appendix.
Equations (27)–(29) form the basis of our fast UETC code.

E. Scaling factor

In the above we introduced the scaling factor
fð!1; !2;#; LfÞ. If we assume the network consists of
only a single string whose number density per simulation
volume is fixed and the string does not decay, then from
(23) in the USM !") ¼ !1

"), while analytically we can
set fð!1; !2;#; LfÞ ¼ 1. Next, we turn on the scaling and
decay of strings. This means in the USM the UETC is
given by

h!")ðk; !1Þ!(*ðk; !2Þi ¼ h!1
")ðk; !1Þ!1

(*ðk; !2Þi

%
XK

i¼1

Ndð!iÞToffð!1; !i; LfÞ

% Toffð!2; !i; LfÞ; (30)

since h!i!ji is equal to h!1!1i for i ¼ j and 0 for i ! j.
Increasing the number of segments such that K ! 1 then
the sum when Lf ! 1 can be evaluated to give Cð!Þ ! 1
[defined in Eq. (22)]. This gives the scaling factor

fð!1; !2;#; Lf ! 1Þ ¼ 1

½#Maxð!1; !2Þ(3
: (31)

The 0< Lf < 1 scaling factor is much more lengthy but is
possible to write down analytically. For the purposes of our
work we assume the strings segments decay instantane-
ously and set Lf ! 1.

F. Comparison with simulations

The expressions for the UETCs given in the Appendix
have been coded in a self-contained FORTRAN 90 mod-
ule. In this code, we make use of asymptotic limits to
improve speed and accuracy. For small x1 and x2, we use
the small x expansion (the B coefficients), thereby elimi-
nating the need to evaluate trigonometric functions or
perform a series expansion of spherical Bessel functions.
For x1 * x2, we use the form of the ETC (the C coeffi-
cients), as the amplitudes Ai contain terms / 1=(2, which
diverge when x1 ¼ x2 (this divergence in the Ai coeffi-
cients vanishes when fully expanding out the integral in
this limit).
In all other cases we perform the sum of integral com-

ponents, tuning the number of terms in the spherical Bessel
series expansions which are required for sufficient accu-
racy, given x1 and x2 (in general larger x1 and x2 require
more terms). A slight caveat here is that the individual
terms of the series expansion can become much larger
than the total sum, and for x1 or x2 greater than +30 loss
of accuracy can occur due to the limitation of double
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is a scaling factor associated with the decrease in the
number density and the decay of strings (see below). The
factor of 2 in the numerator arises from us only considering
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where the relevant integral identities Iiðx);(Þ are given in
the Appendix, ( ¼ kj!1 $ !2jv, x1;2 ¼ k#!1;2 and x) ¼
ðx1 ) x2Þ=2. For each scalar, vector and tensor UETC we
write down the amplitude Ai of each integral component in
the Appendix.
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limit,
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Finally, we are also interested in the equal time correlator
(ETC), so that x1 ¼ x2 ¼ xþ ¼ x and x$ ¼ ( ¼ 0. In this
case we write the exact expression
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The B and C coefficients are also given in the Appendix.
Equations (27)–(29) form the basis of our fast UETC code.
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since h!i!ji is equal to h!1!1i for i ¼ j and 0 for i ! j.
Increasing the number of segments such that K ! 1 then
the sum when Lf ! 1 can be evaluated to give Cð!Þ ! 1
[defined in Eq. (22)]. This gives the scaling factor

fð!1; !2;#; Lf ! 1Þ ¼ 1

½#Maxð!1; !2Þ(3
: (31)

The 0< Lf < 1 scaling factor is much more lengthy but is
possible to write down analytically. For the purposes of our
work we assume the strings segments decay instantane-
ously and set Lf ! 1.

F. Comparison with simulations

The expressions for the UETCs given in the Appendix
have been coded in a self-contained FORTRAN 90 mod-
ule. In this code, we make use of asymptotic limits to
improve speed and accuracy. For small x1 and x2, we use
the small x expansion (the B coefficients), thereby elimi-
nating the need to evaluate trigonometric functions or
perform a series expansion of spherical Bessel functions.
For x1 * x2, we use the form of the ETC (the C coeffi-
cients), as the amplitudes Ai contain terms / 1=(2, which
diverge when x1 ¼ x2 (this divergence in the Ai coeffi-
cients vanishes when fully expanding out the integral in
this limit).
In all other cases we perform the sum of integral com-

ponents, tuning the number of terms in the spherical Bessel
series expansions which are required for sufficient accu-
racy, given x1 and x2 (in general larger x1 and x2 require
more terms). A slight caveat here is that the individual
terms of the series expansion can become much larger
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nating the need to evaluate trigonometric functions or
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series expansions which are required for sufficient accu-
racy, given x1 and x2 (in general larger x1 and x2 require
more terms). A slight caveat here is that the individual
terms of the series expansion can become much larger
than the total sum, and for x1 or x2 greater than +30 loss
of accuracy can occur due to the limitation of double
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y ¼ 2
lnðLf!i=!Þ
lnðLfÞ

$ 1: (25)

Segments start to decay at Lf!i and have disappeared
completely at !i. The parameter Lf < 1 therefore controls
how fast the segments decay, and approximates the
Heaviside step function when Lf ! 1. The value of
this parameter is less well understood from Nambu-Goto
simulations. In general, higher Lf results in less power
in the CMB power spectrum [25,26] for a fixed string
tension G".

D. Analytic expressions

To compute the UETC analytically we integrate over all
strings in the network

h!ðk; !1Þ!ðk; !2Þi ¼
2fð!1; !2;#; LfÞ

16$3

%
Z 2$

0
d%

Z $

0
sin&d&

Z 2$

0
dc

%
Z 2$

0
d'!ðk; !1Þ!ðk; !2Þ; (26)

where by! we mean!00,!
S,!V ,!T and fð!1; !2;#; LfÞ

is a scaling factor associated with the decrease in the
number density and the decay of strings (see below). The
factor of 2 in the numerator arises from us only considering
the real part of the UETC. Three of the integrals can be
performed to give the remaining & integral in terms of
Bessel functions. Some of the resulting terms do not have
compact analytic expressions, so we need to make use of
series expansions. In each case we can write the remaining
& integral as the sum

h!ðk; !1Þ!ðk; !2Þi ¼
fð!1; !2;#; LfÞ"2

k2ð1$ v2Þ

%
X6

i¼1

Ai½Iiðx$;(Þ $ Iiðxþ;(Þ(; (27)

where the relevant integral identities Iiðx);(Þ are given in
the Appendix, ( ¼ kj!1 $ !2jv, x1;2 ¼ k#!1;2 and x) ¼
ðx1 ) x2Þ=2. For each scalar, vector and tensor UETC we
write down the amplitude Ai of each integral component in
the Appendix.

We will also be interested in certain asymptotic limits of
the UETC. For completeness we write down the small x
limit,

h!ðk; !1Þ!ðk; !2Þi *
fð!1; !2;#; LfÞ"2

k2ð1$ v2Þ B: (28)

Finally, we are also interested in the equal time correlator
(ETC), so that x1 ¼ x2 ¼ xþ ¼ x and x$ ¼ ( ¼ 0. In this
case we write the exact expression

h!ðk; !Þ!ðk; !Þi ¼ fð!; !;#; LfÞ"2

k2ð1$ v2Þ C: (29)

The B and C coefficients are also given in the Appendix.
Equations (27)–(29) form the basis of our fast UETC code.

E. Scaling factor

In the above we introduced the scaling factor
fð!1; !2;#; LfÞ. If we assume the network consists of
only a single string whose number density per simulation
volume is fixed and the string does not decay, then from
(23) in the USM !") ¼ !1

"), while analytically we can
set fð!1; !2;#; LfÞ ¼ 1. Next, we turn on the scaling and
decay of strings. This means in the USM the UETC is
given by

h!")ðk; !1Þ!(*ðk; !2Þi ¼ h!1
")ðk; !1Þ!1

(*ðk; !2Þi

%
XK

i¼1

Ndð!iÞToffð!1; !i; LfÞ

% Toffð!2; !i; LfÞ; (30)

since h!i!ji is equal to h!1!1i for i ¼ j and 0 for i ! j.
Increasing the number of segments such that K ! 1 then
the sum when Lf ! 1 can be evaluated to give Cð!Þ ! 1
[defined in Eq. (22)]. This gives the scaling factor

fð!1; !2;#; Lf ! 1Þ ¼ 1

½#Maxð!1; !2Þ(3
: (31)

The 0< Lf < 1 scaling factor is much more lengthy but is
possible to write down analytically. For the purposes of our
work we assume the strings segments decay instantane-
ously and set Lf ! 1.

F. Comparison with simulations

The expressions for the UETCs given in the Appendix
have been coded in a self-contained FORTRAN 90 mod-
ule. In this code, we make use of asymptotic limits to
improve speed and accuracy. For small x1 and x2, we use
the small x expansion (the B coefficients), thereby elimi-
nating the need to evaluate trigonometric functions or
perform a series expansion of spherical Bessel functions.
For x1 * x2, we use the form of the ETC (the C coeffi-
cients), as the amplitudes Ai contain terms / 1=(2, which
diverge when x1 ¼ x2 (this divergence in the Ai coeffi-
cients vanishes when fully expanding out the integral in
this limit).
In all other cases we perform the sum of integral com-

ponents, tuning the number of terms in the spherical Bessel
series expansions which are required for sufficient accu-
racy, given x1 and x2 (in general larger x1 and x2 require
more terms). A slight caveat here is that the individual
terms of the series expansion can become much larger
than the total sum, and for x1 or x2 greater than +30 loss
of accuracy can occur due to the limitation of double
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►The scaling function can be computed analytically from the segment 
decay

►UETC involves several integrals which are doable, e.g.

with CMB anisotropies more transparent, as UETCs can be
obtained very efficiently for different assumptions regard-
ing the properties of the string network. From this we have
written a new code to compute CMB power spectra. We
believe that our implementation improves that of the exist-
ing CMBACT code in three main ways:

(1) The UETCs are calculated analytically. While
CMBACT does not directly compute UETCs, there
is computational overhead associated with creating
an ensemble of source histories.

(2) Once the UETCs have been calculated they can
bediagonalized,with the eigenvectors actingas sources
in an Einstein-Boltzmann code. A much smaller num-
ber of eigenmodes, as opposed to averaging over a
number of source histories, are required to achieve
the same accuracy in the CMB power spectrum.

(3) Our implementation uses the CAMB Einstein-
Boltzmann code, which has several advantages over
CMBFAST, which CMBACT is based on. CAMB has been
optimized for efficiency and accuracy, is more modu-
lar, and supports the OpenMP framework. Secondly,
CAMB supports the latest features such as CMB lens-
ing and bispectrum estimation, and is readily compat-
ible with the MCMC package COSMOMC [62].

The resulting code can compute spectra, whose tempera-
ture power spectra are accurate at the 10% level, in only a
few minutes on a multithreaded CPU. The dramatic
improvement in computational time achieved with our
approach now allows us to perform comprehensive scans
over the string network parameter space. In particular, the
compatibility of our CAMB implementation with COSMOMC

allows us to perform cosmological parameter fitting for
inflation+strings scenarios, marginalizing over string net-
work parameters. This will be the subject of a forthcoming
publication. Our methods can also be generalized to more
complicated networks of cosmic superstrings comprising
string segments with different tensions that join together in
Y-shaped junctions [61]. This will allow us to efficiently
probe a wide range of well-motivated inflationary models
in string theory constraining fundamental parameters [16].
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APPENDIX: INTEGRAL IDENTITIES
AND AMPLITUDES

This Appendix details integral identities and amplitudes
used in deriving the UETCs. Note there is actually a

divergent component in both the I1ðx;!Þ and I4ðx;!Þ inte-
grals, but these cancel as we always take the combination
Iiðx#;!Þ # Iiðxþ;!Þ. Therefore in the following relations
the divergent component is discarded.
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1

2

Z "

0
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¼
X1

c¼0

1

c!

!

ð2c# 1Þ

!
# x2

2!

"
c
jc#1ð!Þ; (A1)

where jnðxÞ is the spherical Bessel function,
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We now give amplitudes of the integral components and
the B and C coefficients for each UETC. In the following
Si½x' ¼ R

x
0 sincx

0dx0 and sincx ¼ sinx=x.
h!00ðk; $1Þ!00ðk; $2Þi:

A1 ¼ 2%2;

A2 ¼ 0;

A3 ¼ 0;

A4 ¼ 0;

A5 ¼ 0;

A6 ¼ 0;

B ¼ %2x1x2;

C ¼ 2%2ð#1þ cosxþ xSi½x'Þ;

AVGOUSTIDIS et al. PHYSICAL REVIEW D 86, 123513 (2012)

123513-10

with CMB anisotropies more transparent, as UETCs can be
obtained very efficiently for different assumptions regard-
ing the properties of the string network. From this we have
written a new code to compute CMB power spectra. We
believe that our implementation improves that of the exist-
ing CMBACT code in three main ways:

(1) The UETCs are calculated analytically. While
CMBACT does not directly compute UETCs, there
is computational overhead associated with creating
an ensemble of source histories.

(2) Once the UETCs have been calculated they can
bediagonalized,with the eigenvectors actingas sources
in an Einstein-Boltzmann code. A much smaller num-
ber of eigenmodes, as opposed to averaging over a
number of source histories, are required to achieve
the same accuracy in the CMB power spectrum.

(3) Our implementation uses the CAMB Einstein-
Boltzmann code, which has several advantages over
CMBFAST, which CMBACT is based on. CAMB has been
optimized for efficiency and accuracy, is more modu-
lar, and supports the OpenMP framework. Secondly,
CAMB supports the latest features such as CMB lens-
ing and bispectrum estimation, and is readily compat-
ible with the MCMC package COSMOMC [62].

The resulting code can compute spectra, whose tempera-
ture power spectra are accurate at the 10% level, in only a
few minutes on a multithreaded CPU. The dramatic
improvement in computational time achieved with our
approach now allows us to perform comprehensive scans
over the string network parameter space. In particular, the
compatibility of our CAMB implementation with COSMOMC

allows us to perform cosmological parameter fitting for
inflation+strings scenarios, marginalizing over string net-
work parameters. This will be the subject of a forthcoming
publication. Our methods can also be generalized to more
complicated networks of cosmic superstrings comprising
string segments with different tensions that join together in
Y-shaped junctions [61]. This will allow us to efficiently
probe a wide range of well-motivated inflationary models
in string theory constraining fundamental parameters [16].
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APPENDIX: INTEGRAL IDENTITIES
AND AMPLITUDES

This Appendix details integral identities and amplitudes
used in deriving the UETCs. Note there is actually a

divergent component in both the I1ðx;!Þ and I4ðx;!Þ inte-
grals, but these cancel as we always take the combination
Iiðx#;!Þ # Iiðxþ;!Þ. Therefore in the following relations
the divergent component is discarded.
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where jnðxÞ is the spherical Bessel function,
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We now give amplitudes of the integral components and
the B and C coefficients for each UETC. In the following
Si½x' ¼ R

x
0 sincx

0dx0 and sincx ¼ sinx=x.
h!00ðk; $1Þ!00ðk; $2Þi:

A1 ¼ 2%2;

A2 ¼ 0;

A3 ¼ 0;

A4 ¼ 0;

A5 ¼ 0;

A6 ¼ 0;

B ¼ %2x1x2;

C ¼ 2%2ð#1þ cosxþ xSi½x'Þ;
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►And only two which weren’t       , e.g.

with CMB anisotropies more transparent, as UETCs can be
obtained very efficiently for different assumptions regard-
ing the properties of the string network. From this we have
written a new code to compute CMB power spectra. We
believe that our implementation improves that of the exist-
ing CMBACT code in three main ways:

(1) The UETCs are calculated analytically. While
CMBACT does not directly compute UETCs, there
is computational overhead associated with creating
an ensemble of source histories.

(2) Once the UETCs have been calculated they can
bediagonalized,with the eigenvectors actingas sources
in an Einstein-Boltzmann code. A much smaller num-
ber of eigenmodes, as opposed to averaging over a
number of source histories, are required to achieve
the same accuracy in the CMB power spectrum.

(3) Our implementation uses the CAMB Einstein-
Boltzmann code, which has several advantages over
CMBFAST, which CMBACT is based on. CAMB has been
optimized for efficiency and accuracy, is more modu-
lar, and supports the OpenMP framework. Secondly,
CAMB supports the latest features such as CMB lens-
ing and bispectrum estimation, and is readily compat-
ible with the MCMC package COSMOMC [62].

The resulting code can compute spectra, whose tempera-
ture power spectra are accurate at the 10% level, in only a
few minutes on a multithreaded CPU. The dramatic
improvement in computational time achieved with our
approach now allows us to perform comprehensive scans
over the string network parameter space. In particular, the
compatibility of our CAMB implementation with COSMOMC

allows us to perform cosmological parameter fitting for
inflation+strings scenarios, marginalizing over string net-
work parameters. This will be the subject of a forthcoming
publication. Our methods can also be generalized to more
complicated networks of cosmic superstrings comprising
string segments with different tensions that join together in
Y-shaped junctions [61]. This will allow us to efficiently
probe a wide range of well-motivated inflationary models
in string theory constraining fundamental parameters [16].
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APPENDIX: INTEGRAL IDENTITIES
AND AMPLITUDES

This Appendix details integral identities and amplitudes
used in deriving the UETCs. Note there is actually a

divergent component in both the I1ðx;!Þ and I4ðx;!Þ inte-
grals, but these cancel as we always take the combination
Iiðx#;!Þ # Iiðxþ;!Þ. Therefore in the following relations
the divergent component is discarded.
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We now give amplitudes of the integral components and
the B and C coefficients for each UETC. In the following
Si½x' ¼ R

x
0 sincx

0dx0 and sincx ¼ sinx=x.
h!00ðk; $1Þ!00ðk; $2Þi:

A1 ¼ 2%2;

A2 ¼ 0;

A3 ¼ 0;

A4 ¼ 0;

A5 ¼ 0;

A6 ¼ 0;

B ¼ %2x1x2;

C ¼ 2%2ð#1þ cosxþ xSi½x'Þ;
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with CMB anisotropies more transparent, as UETCs can be
obtained very efficiently for different assumptions regard-
ing the properties of the string network. From this we have
written a new code to compute CMB power spectra. We
believe that our implementation improves that of the exist-
ing CMBACT code in three main ways:

(1) The UETCs are calculated analytically. While
CMBACT does not directly compute UETCs, there
is computational overhead associated with creating
an ensemble of source histories.

(2) Once the UETCs have been calculated they can
bediagonalized,with the eigenvectors actingas sources
in an Einstein-Boltzmann code. A much smaller num-
ber of eigenmodes, as opposed to averaging over a
number of source histories, are required to achieve
the same accuracy in the CMB power spectrum.

(3) Our implementation uses the CAMB Einstein-
Boltzmann code, which has several advantages over
CMBFAST, which CMBACT is based on. CAMB has been
optimized for efficiency and accuracy, is more modu-
lar, and supports the OpenMP framework. Secondly,
CAMB supports the latest features such as CMB lens-
ing and bispectrum estimation, and is readily compat-
ible with the MCMC package COSMOMC [62].

The resulting code can compute spectra, whose tempera-
ture power spectra are accurate at the 10% level, in only a
few minutes on a multithreaded CPU. The dramatic
improvement in computational time achieved with our
approach now allows us to perform comprehensive scans
over the string network parameter space. In particular, the
compatibility of our CAMB implementation with COSMOMC

allows us to perform cosmological parameter fitting for
inflation+strings scenarios, marginalizing over string net-
work parameters. This will be the subject of a forthcoming
publication. Our methods can also be generalized to more
complicated networks of cosmic superstrings comprising
string segments with different tensions that join together in
Y-shaped junctions [61]. This will allow us to efficiently
probe a wide range of well-motivated inflationary models
in string theory constraining fundamental parameters [16].
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APPENDIX: INTEGRAL IDENTITIES
AND AMPLITUDES

This Appendix details integral identities and amplitudes
used in deriving the UETCs. Note there is actually a

divergent component in both the I1ðx;!Þ and I4ðx;!Þ inte-
grals, but these cancel as we always take the combination
Iiðx#;!Þ # Iiðxþ;!Þ. Therefore in the following relations
the divergent component is discarded.

I1ðx;!Þ ¼
1

2

Z "

0
d# sin# cosðx cos#ÞJ0ð! sin#Þsec2#

¼
X1

c¼0

1

c!

!

ð2c# 1Þ

!
# x2

2!

"
c
jc#1ð!Þ; (A1)

where jnðxÞ is the spherical Bessel function,

I2ðx;!Þ ¼
1

2

Z "

0
d# sin# cosðx cos#ÞJ0ð! sin#Þ

¼
!
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ x2

p
"
; (A2)

I3ðx;!Þ ¼
1

2

Z "

0
d#sin3# cosðx cos#ÞJ0ð! sin#Þ

¼
$
1þ @2

@x2

%!
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ x2

p
"
; (A3)

I4ðx;!Þ ¼
1

2

Z "

0
d# sin# cosðx cos#Þ J1ð! sin#Þ

! sin#
sec2#

¼ cosx

!2 #
X1

c¼0

1

c!

1

ð2c# 1Þ

!
# x2

2!

"
c
jc#2ð!Þ; (A4)

I5ðx;!Þ ¼
1

2

Z "

0
d# sin# cosðx cos#Þ J1ð! sin#Þ

! sin#

¼ 1

!2

$
cosx# cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ x2

q %
; (A5)

I6ðx;!Þ ¼
1

2

Z "

0
d#sin3# cosðx cos#Þ J1ð! sin#Þ

! sin#

¼ # 1

!2 þ x2

$
1þ 1

x

@

@x

%
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ x2

q
: (A6)

We now give amplitudes of the integral components and
the B and C coefficients for each UETC. In the following
Si½x' ¼ R

x
0 sincx

0dx0 and sincx ¼ sinx=x.
h!00ðk; $1Þ!00ðk; $2Þi:

A1 ¼ 2%2;

A2 ¼ 0;

A3 ¼ 0;

A4 ¼ 0;

A5 ¼ 0;

A6 ¼ 0;

B ¼ %2x1x2;

C ¼ 2%2ð#1þ cosxþ xSi½x'Þ;
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Comparison

precision arithmetic in our code. In these cases we perform
the integrals of (A1) and (A4) numerically. The result is a
code which can generate the scalar, vector and tensor
UETCs, over all scales of interest relevant for the CMB,
on a single CPU in!20–30 seconds. We have parallelized
this code, so a moderately threaded CPU can calculate the
UETCs extremely quickly.

For our comparisons with the (numerical) USM we use
the publicly available CMBACT code [26], using a string

decay parameter of Lf ¼ 0:99 and K ¼ 500 consolidated
segments. We assume this value of Lf is close enough to
unity so Eq. (31) is valid in the analytic calculation. We
use string network parameters v ¼ 0:65, ! ¼ 0:13 and
" ¼ 1:9, turning off the time evolution of these in
CMBACT. These parameters are chosen to match the VOS
evolution in the radiation era, as in Refs. [26,54]. At present,
we have not attempted to incorporate time dependence of
the string parameters in our code, as this complicates the
eigendecomposition of the UETC (see below). Although the
scaling solution will vary somewhat as the Universe changes
from radiation to matter domination, for the purposes of
our model we fix the network parameters to be constant.
In Fig. 1 we show scaled UETCs defined as ð#1#2Þ1=2 %

h!ðk; #1Þ!ðk; #2Þi=$2, with the numerical and analytical
results shown, respectively, in the left and right columns.
From our analytic expressions for the UETC one can see
that the only dynamical variable is the combination k#,
which is in agreement with physical expectations. We plot
the UETC derived from both 20000 realizations of CMBACT

and our analytic expressions, and find the two in excellent
agreement. For comparison, deriving the UETC from
20000 realizations of CMBACT takes several hours.3

III. CMB ANISOTROPIES

An important source of difficulty in the computation
of CMB power spectra from cosmic strings is that they
are incoherent sources of perturbations. As a result one
faces complications in calculating the ensemble average of
the CMB transfer functions. In general there are two
approaches to address the issue of incoherence. The first
avoids dealing with the UETC directly. Instead, one creates
an ensemble of source histories of the USM, which has the
same two-point correlation statistics as the UETC. The
source histories are then used in an Einstein-Boltzmann
code, and the power spectrum can be obtained by averag-
ing over many realizations of the network. This is the
approach CMBACT uses.
The second works directly with the UETC, which can be

estimated from string simulations, or in our case analyti-
cally. The UETC is first decomposed into eigenmodes.
Each of the individual modes is coherent, and can be
used as source function in the Einstein-Boltzmann code.
This approach was originally proposed in Ref. [55], and is
the method used by groups calculating CMB spectra from
Abelian-Higgs string simulations (e.g., Refs. [31]). Since
we readily have the UETC, we follow the latter approach.

A. Eigenmode decomposition

Since the scaled UETC is only a function of k#1;2 we can
discretize it on a logarithmic grid in k#1;2 with n% n grid

FIG. 1 (color online). Scaled unequal time correlators,
ð#1#2Þ1=2h!ðk; #1Þ!ðk; #2Þi=$2. (Left) The UETC is derived
from 20 000 realizations of the string network using CMBACT,
with a decay parameter Lf ¼ 0:99, and (right) the analytic
calculation (see text). From top to bottom we show the 00
component, then scalar, vector and tensor anisotropic stress
components, and finally the 00& S cross correlator.

3This does not include the Einstein-Boltzmann solver part of
CMBACT, which takes much longer to run.
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Eigenmodes

points. It is also real and symmetric and hence diagonal-
izable. We therefore decompose it as a sum of eigenvectors

ðk2!1!2Þ"ð!1!2Þ1=2h!ðk; !1Þ!ðk; !2Þi

¼
Xn

i¼1

#iuiðk!1Þ $ uiðk!2Þ; (32)

where #i are the eigenvalues, and the eigenvectors ui are
also only functions of k!. The term ðk2!1!2Þ" is a weight-
ing factor designed to improve the accuracy of the recon-
structed UETC when the eigenmode sum is truncated at
some value less than n (see below). Aweight of "> 0, for
example, will improve the reconstruction of the k!> 1
region. In practice this value is tuned based on the scales
which contribute to CMB anisotropies. We find a weight of
" ¼ 0:25 is around optimal for improving the convergence
of the power spectra.

Since the correlation between scalars, vectors and ten-
sors vanishes we can perform the diagonalization on the
vector/tensor UETCs independently. However, for the sca-
lars we have two components of the energy-momentum
tensor, the density !00 and anisotropic stress !S, which
are correlated. In order to perform the decomposition for
scalars we therefore discretize theUETC on a 2n% 2n grid.
This has a 2% 2 block diagonal form, with the 00& 00 and
S& S components of (32) along the diagonal, and 00& S as
the off-diagonal components. After performing the eigen-
decomposition the first half of the eigenvector corresponds
to density, and the other half to the anisotropic stress.

This diagonalization procedure introduces a change
of basis. Since the eigenvectors are orthogonal, and the
Einstein-Boltzmann solver uses linear perturbation theory,
one can use each of these new basis functions as a source
term. This means we can simply modify the Einstein
equation sources according to

!ðk!Þ ! uðk!Þ
ðk!Þ"!1=2

: (33)

The total power spectrum is then found by summing over
all eigenmodes

C‘ ¼
Xn

i¼1

#iC
i
‘; (34)

where Ci
‘ are the individual power spectra of each eigen-

mode. In practice we order modes from the highest to
lowest eigenvalues and truncate the sum at a finite number
of modes (which gives the desired accuracy for C‘).
Although each of the eigenmodes is coherent, good con-
vergence can be obtained including only relatively few
modes in the sum.

B. CMB power spectrum

The Einstein-Boltzmann solver we use is the publicly
available CAMB code [56]. This has several advantages
over the CMBFAST [57] code which CMBACT is based on.
It has been tuned for efficiency and accuracy, and also uses

the OpenMP parallel framework. Our implementation is
based on the January 2012 version of the code.
The string eigenvector sources were next incorporated.

For scalars we also require the longitudinal component
of the velocity perturbation, !D. This can be derived
from the known components by solving the differential
equation [25]

_!D ¼&2H!D & k2

3

!
!D & _!00

H
&!00þ 2!S

"
; (35)

where overdots now represent differentiation with respect
to conformal time and H ¼ _a=a.
The CMB power spectra do not require any initial

spectrum to be specified since the sources are active and
are given by

CiðIÞ
‘ ¼ 2

$

Z
k2dk"iðIÞ

‘ ðk; !0Þ"iðIÞ
‘ ðk; !0Þ; (36)

where I ¼ S, V, T for the scalar, vector and tensor con-
tributions, and "i

‘ðk; !0Þ are the temperature/polarization
transfer functions for each mode. These transfer functions
can be found in detail, for example, in Ref. [58].
For our analysis we use the mean WMAP seven-year

cosmological parameters [59]; that is a baryon density
#bh

2 ¼ 0:02249, cold dark matter density #bh
2 ¼

0:1120, Hubble parameter H0 ¼ 70:4 km s&1 Mpc&1 and
an optical depth to reionization ! ¼ 0:088. We switch off
lensing of the CMB in order to directly compare results
with CMBACT. The same ‘‘default’’ set of string parameters
of v ¼ 0:65, % ¼ 0:13 and & ¼ 1:9 are used, again turning
off the time evolution of these and setting the decay
parameter to Lf ¼ 0:99 in CMBACT. We fix the string
tension to G' ¼ 2% 10&7, a limit which is allowed, for
the default parameters, by current CMB data [21].
As in the CMBACT implementation, we found it neces-

sary to adjust internal accuracy parameters of CAMB to
achieve the desired accuracy in the power spectrum. We
varied the number of terms in the Boltzmann hierarchy
and the ‘ mode spacing to compute the spectrum, but the
only adjustment we found necessary was to increase the
number of k modes for the CMB source functions. For
the aficionados, sufficient accuracy was achieved by set-
ting highaccuracydefault ¼ T and accuracyboost ¼ 1:5.
The TT, EE, BB and TE power spectra are shown in

Fig. 2, computing the UETCs on a 1024% 1024 grid in the
range k! ¼ ½10&4; 104), with logarithmic grid spacing, and
a weighting factor of " ¼ 0:25. The range and grid size of
the UETC were chosen so that the spectrum is insensitive
to increasing the range or number of grid points. The
weighting factor has been chosen to improve the conver-
gence of the spectrum for a finite number of modes.
We plot spectra truncating the eigenmode sum at 16, 32,

64, 128 and 256 modes, and also show the results from
CMBACT using 2000 network realizations. The convergence
rate depends on the particular spectrum of interest. In
general, polarization spectra converge more quickly since
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points. It is also real and symmetric and hence diagonal-
izable. We therefore decompose it as a sum of eigenvectors

ðk2!1!2Þ"ð!1!2Þ1=2h!ðk; !1Þ!ðk; !2Þi

¼
Xn

i¼1

#iuiðk!1Þ $ uiðk!2Þ; (32)

where #i are the eigenvalues, and the eigenvectors ui are
also only functions of k!. The term ðk2!1!2Þ" is a weight-
ing factor designed to improve the accuracy of the recon-
structed UETC when the eigenmode sum is truncated at
some value less than n (see below). Aweight of "> 0, for
example, will improve the reconstruction of the k!> 1
region. In practice this value is tuned based on the scales
which contribute to CMB anisotropies. We find a weight of
" ¼ 0:25 is around optimal for improving the convergence
of the power spectra.

Since the correlation between scalars, vectors and ten-
sors vanishes we can perform the diagonalization on the
vector/tensor UETCs independently. However, for the sca-
lars we have two components of the energy-momentum
tensor, the density !00 and anisotropic stress !S, which
are correlated. In order to perform the decomposition for
scalars we therefore discretize theUETC on a 2n% 2n grid.
This has a 2% 2 block diagonal form, with the 00& 00 and
S& S components of (32) along the diagonal, and 00& S as
the off-diagonal components. After performing the eigen-
decomposition the first half of the eigenvector corresponds
to density, and the other half to the anisotropic stress.

This diagonalization procedure introduces a change
of basis. Since the eigenvectors are orthogonal, and the
Einstein-Boltzmann solver uses linear perturbation theory,
one can use each of these new basis functions as a source
term. This means we can simply modify the Einstein
equation sources according to

!ðk!Þ ! uðk!Þ
ðk!Þ"!1=2

: (33)

The total power spectrum is then found by summing over
all eigenmodes

C‘ ¼
Xn

i¼1

#iC
i
‘; (34)

where Ci
‘ are the individual power spectra of each eigen-

mode. In practice we order modes from the highest to
lowest eigenvalues and truncate the sum at a finite number
of modes (which gives the desired accuracy for C‘).
Although each of the eigenmodes is coherent, good con-
vergence can be obtained including only relatively few
modes in the sum.

B. CMB power spectrum

The Einstein-Boltzmann solver we use is the publicly
available CAMB code [56]. This has several advantages
over the CMBFAST [57] code which CMBACT is based on.
It has been tuned for efficiency and accuracy, and also uses

the OpenMP parallel framework. Our implementation is
based on the January 2012 version of the code.
The string eigenvector sources were next incorporated.

For scalars we also require the longitudinal component
of the velocity perturbation, !D. This can be derived
from the known components by solving the differential
equation [25]

_!D ¼&2H!D & k2

3

!
!D & _!00

H
&!00þ 2!S

"
; (35)

where overdots now represent differentiation with respect
to conformal time and H ¼ _a=a.
The CMB power spectra do not require any initial

spectrum to be specified since the sources are active and
are given by

CiðIÞ
‘ ¼ 2

$

Z
k2dk"iðIÞ

‘ ðk; !0Þ"iðIÞ
‘ ðk; !0Þ; (36)

where I ¼ S, V, T for the scalar, vector and tensor con-
tributions, and "i

‘ðk; !0Þ are the temperature/polarization
transfer functions for each mode. These transfer functions
can be found in detail, for example, in Ref. [58].
For our analysis we use the mean WMAP seven-year

cosmological parameters [59]; that is a baryon density
#bh

2 ¼ 0:02249, cold dark matter density #bh
2 ¼

0:1120, Hubble parameter H0 ¼ 70:4 km s&1 Mpc&1 and
an optical depth to reionization ! ¼ 0:088. We switch off
lensing of the CMB in order to directly compare results
with CMBACT. The same ‘‘default’’ set of string parameters
of v ¼ 0:65, % ¼ 0:13 and & ¼ 1:9 are used, again turning
off the time evolution of these and setting the decay
parameter to Lf ¼ 0:99 in CMBACT. We fix the string
tension to G' ¼ 2% 10&7, a limit which is allowed, for
the default parameters, by current CMB data [21].
As in the CMBACT implementation, we found it neces-

sary to adjust internal accuracy parameters of CAMB to
achieve the desired accuracy in the power spectrum. We
varied the number of terms in the Boltzmann hierarchy
and the ‘ mode spacing to compute the spectrum, but the
only adjustment we found necessary was to increase the
number of k modes for the CMB source functions. For
the aficionados, sufficient accuracy was achieved by set-
ting highaccuracydefault ¼ T and accuracyboost ¼ 1:5.
The TT, EE, BB and TE power spectra are shown in

Fig. 2, computing the UETCs on a 1024% 1024 grid in the
range k! ¼ ½10&4; 104), with logarithmic grid spacing, and
a weighting factor of " ¼ 0:25. The range and grid size of
the UETC were chosen so that the spectrum is insensitive
to increasing the range or number of grid points. The
weighting factor has been chosen to improve the conver-
gence of the spectrum for a finite number of modes.
We plot spectra truncating the eigenmode sum at 16, 32,

64, 128 and 256 modes, and also show the results from
CMBACT using 2000 network realizations. The convergence
rate depends on the particular spectrum of interest. In
general, polarization spectra converge more quickly since
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►UETC can be decomposed into eigenmodes - each of these are 
coherent, can be used as source functions in CMB codepoints. It is also real and symmetric and hence diagonal-

izable. We therefore decompose it as a sum of eigenvectors

ðk2!1!2Þ"ð!1!2Þ1=2h!ðk; !1Þ!ðk; !2Þi

¼
Xn

i¼1

#iuiðk!1Þ $ uiðk!2Þ; (32)

where #i are the eigenvalues, and the eigenvectors ui are
also only functions of k!. The term ðk2!1!2Þ" is a weight-
ing factor designed to improve the accuracy of the recon-
structed UETC when the eigenmode sum is truncated at
some value less than n (see below). Aweight of "> 0, for
example, will improve the reconstruction of the k!> 1
region. In practice this value is tuned based on the scales
which contribute to CMB anisotropies. We find a weight of
" ¼ 0:25 is around optimal for improving the convergence
of the power spectra.

Since the correlation between scalars, vectors and ten-
sors vanishes we can perform the diagonalization on the
vector/tensor UETCs independently. However, for the sca-
lars we have two components of the energy-momentum
tensor, the density !00 and anisotropic stress !S, which
are correlated. In order to perform the decomposition for
scalars we therefore discretize theUETC on a 2n% 2n grid.
This has a 2% 2 block diagonal form, with the 00& 00 and
S& S components of (32) along the diagonal, and 00& S as
the off-diagonal components. After performing the eigen-
decomposition the first half of the eigenvector corresponds
to density, and the other half to the anisotropic stress.

This diagonalization procedure introduces a change
of basis. Since the eigenvectors are orthogonal, and the
Einstein-Boltzmann solver uses linear perturbation theory,
one can use each of these new basis functions as a source
term. This means we can simply modify the Einstein
equation sources according to

!ðk!Þ ! uðk!Þ
ðk!Þ"!1=2

: (33)

The total power spectrum is then found by summing over
all eigenmodes

C‘ ¼
Xn

i¼1

#iC
i
‘; (34)

where Ci
‘ are the individual power spectra of each eigen-

mode. In practice we order modes from the highest to
lowest eigenvalues and truncate the sum at a finite number
of modes (which gives the desired accuracy for C‘).
Although each of the eigenmodes is coherent, good con-
vergence can be obtained including only relatively few
modes in the sum.

B. CMB power spectrum

The Einstein-Boltzmann solver we use is the publicly
available CAMB code [56]. This has several advantages
over the CMBFAST [57] code which CMBACT is based on.
It has been tuned for efficiency and accuracy, and also uses

the OpenMP parallel framework. Our implementation is
based on the January 2012 version of the code.
The string eigenvector sources were next incorporated.

For scalars we also require the longitudinal component
of the velocity perturbation, !D. This can be derived
from the known components by solving the differential
equation [25]

_!D ¼&2H!D & k2

3

!
!D & _!00

H
&!00þ 2!S

"
; (35)

where overdots now represent differentiation with respect
to conformal time and H ¼ _a=a.
The CMB power spectra do not require any initial

spectrum to be specified since the sources are active and
are given by

CiðIÞ
‘ ¼ 2

$

Z
k2dk"iðIÞ

‘ ðk; !0Þ"iðIÞ
‘ ðk; !0Þ; (36)

where I ¼ S, V, T for the scalar, vector and tensor con-
tributions, and "i

‘ðk; !0Þ are the temperature/polarization
transfer functions for each mode. These transfer functions
can be found in detail, for example, in Ref. [58].
For our analysis we use the mean WMAP seven-year

cosmological parameters [59]; that is a baryon density
#bh

2 ¼ 0:02249, cold dark matter density #bh
2 ¼

0:1120, Hubble parameter H0 ¼ 70:4 km s&1 Mpc&1 and
an optical depth to reionization ! ¼ 0:088. We switch off
lensing of the CMB in order to directly compare results
with CMBACT. The same ‘‘default’’ set of string parameters
of v ¼ 0:65, % ¼ 0:13 and & ¼ 1:9 are used, again turning
off the time evolution of these and setting the decay
parameter to Lf ¼ 0:99 in CMBACT. We fix the string
tension to G' ¼ 2% 10&7, a limit which is allowed, for
the default parameters, by current CMB data [21].
As in the CMBACT implementation, we found it neces-

sary to adjust internal accuracy parameters of CAMB to
achieve the desired accuracy in the power spectrum. We
varied the number of terms in the Boltzmann hierarchy
and the ‘ mode spacing to compute the spectrum, but the
only adjustment we found necessary was to increase the
number of k modes for the CMB source functions. For
the aficionados, sufficient accuracy was achieved by set-
ting highaccuracydefault ¼ T and accuracyboost ¼ 1:5.
The TT, EE, BB and TE power spectra are shown in

Fig. 2, computing the UETCs on a 1024% 1024 grid in the
range k! ¼ ½10&4; 104), with logarithmic grid spacing, and
a weighting factor of " ¼ 0:25. The range and grid size of
the UETC were chosen so that the spectrum is insensitive
to increasing the range or number of grid points. The
weighting factor has been chosen to improve the conver-
gence of the spectrum for a finite number of modes.
We plot spectra truncating the eigenmode sum at 16, 32,

64, 128 and 256 modes, and also show the results from
CMBACT using 2000 network realizations. The convergence
rate depends on the particular spectrum of interest. In
general, polarization spectra converge more quickly since
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points. It is also real and symmetric and hence diagonal-
izable. We therefore decompose it as a sum of eigenvectors

ðk2!1!2Þ"ð!1!2Þ1=2h!ðk; !1Þ!ðk; !2Þi

¼
Xn

i¼1

#iuiðk!1Þ $ uiðk!2Þ; (32)

where #i are the eigenvalues, and the eigenvectors ui are
also only functions of k!. The term ðk2!1!2Þ" is a weight-
ing factor designed to improve the accuracy of the recon-
structed UETC when the eigenmode sum is truncated at
some value less than n (see below). Aweight of "> 0, for
example, will improve the reconstruction of the k!> 1
region. In practice this value is tuned based on the scales
which contribute to CMB anisotropies. We find a weight of
" ¼ 0:25 is around optimal for improving the convergence
of the power spectra.

Since the correlation between scalars, vectors and ten-
sors vanishes we can perform the diagonalization on the
vector/tensor UETCs independently. However, for the sca-
lars we have two components of the energy-momentum
tensor, the density !00 and anisotropic stress !S, which
are correlated. In order to perform the decomposition for
scalars we therefore discretize theUETC on a 2n% 2n grid.
This has a 2% 2 block diagonal form, with the 00& 00 and
S& S components of (32) along the diagonal, and 00& S as
the off-diagonal components. After performing the eigen-
decomposition the first half of the eigenvector corresponds
to density, and the other half to the anisotropic stress.

This diagonalization procedure introduces a change
of basis. Since the eigenvectors are orthogonal, and the
Einstein-Boltzmann solver uses linear perturbation theory,
one can use each of these new basis functions as a source
term. This means we can simply modify the Einstein
equation sources according to

!ðk!Þ ! uðk!Þ
ðk!Þ"!1=2

: (33)

The total power spectrum is then found by summing over
all eigenmodes

C‘ ¼
Xn

i¼1

#iC
i
‘; (34)

where Ci
‘ are the individual power spectra of each eigen-

mode. In practice we order modes from the highest to
lowest eigenvalues and truncate the sum at a finite number
of modes (which gives the desired accuracy for C‘).
Although each of the eigenmodes is coherent, good con-
vergence can be obtained including only relatively few
modes in the sum.

B. CMB power spectrum

The Einstein-Boltzmann solver we use is the publicly
available CAMB code [56]. This has several advantages
over the CMBFAST [57] code which CMBACT is based on.
It has been tuned for efficiency and accuracy, and also uses

the OpenMP parallel framework. Our implementation is
based on the January 2012 version of the code.
The string eigenvector sources were next incorporated.

For scalars we also require the longitudinal component
of the velocity perturbation, !D. This can be derived
from the known components by solving the differential
equation [25]

_!D ¼&2H!D & k2

3

!
!D & _!00

H
&!00þ 2!S

"
; (35)

where overdots now represent differentiation with respect
to conformal time and H ¼ _a=a.
The CMB power spectra do not require any initial

spectrum to be specified since the sources are active and
are given by

CiðIÞ
‘ ¼ 2

$

Z
k2dk"iðIÞ

‘ ðk; !0Þ"iðIÞ
‘ ðk; !0Þ; (36)

where I ¼ S, V, T for the scalar, vector and tensor con-
tributions, and "i

‘ðk; !0Þ are the temperature/polarization
transfer functions for each mode. These transfer functions
can be found in detail, for example, in Ref. [58].
For our analysis we use the mean WMAP seven-year

cosmological parameters [59]; that is a baryon density
#bh

2 ¼ 0:02249, cold dark matter density #bh
2 ¼

0:1120, Hubble parameter H0 ¼ 70:4 km s&1 Mpc&1 and
an optical depth to reionization ! ¼ 0:088. We switch off
lensing of the CMB in order to directly compare results
with CMBACT. The same ‘‘default’’ set of string parameters
of v ¼ 0:65, % ¼ 0:13 and & ¼ 1:9 are used, again turning
off the time evolution of these and setting the decay
parameter to Lf ¼ 0:99 in CMBACT. We fix the string
tension to G' ¼ 2% 10&7, a limit which is allowed, for
the default parameters, by current CMB data [21].
As in the CMBACT implementation, we found it neces-

sary to adjust internal accuracy parameters of CAMB to
achieve the desired accuracy in the power spectrum. We
varied the number of terms in the Boltzmann hierarchy
and the ‘ mode spacing to compute the spectrum, but the
only adjustment we found necessary was to increase the
number of k modes for the CMB source functions. For
the aficionados, sufficient accuracy was achieved by set-
ting highaccuracydefault ¼ T and accuracyboost ¼ 1:5.
The TT, EE, BB and TE power spectra are shown in

Fig. 2, computing the UETCs on a 1024% 1024 grid in the
range k! ¼ ½10&4; 104), with logarithmic grid spacing, and
a weighting factor of " ¼ 0:25. The range and grid size of
the UETC were chosen so that the spectrum is insensitive
to increasing the range or number of grid points. The
weighting factor has been chosen to improve the conver-
gence of the spectrum for a finite number of modes.
We plot spectra truncating the eigenmode sum at 16, 32,

64, 128 and 256 modes, and also show the results from
CMBACT using 2000 network realizations. The convergence
rate depends on the particular spectrum of interest. In
general, polarization spectra converge more quickly since
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points. It is also real and symmetric and hence diagonal-
izable. We therefore decompose it as a sum of eigenvectors

ðk2!1!2Þ"ð!1!2Þ1=2h!ðk; !1Þ!ðk; !2Þi

¼
Xn

i¼1

#iuiðk!1Þ $ uiðk!2Þ; (32)

where #i are the eigenvalues, and the eigenvectors ui are
also only functions of k!. The term ðk2!1!2Þ" is a weight-
ing factor designed to improve the accuracy of the recon-
structed UETC when the eigenmode sum is truncated at
some value less than n (see below). Aweight of "> 0, for
example, will improve the reconstruction of the k!> 1
region. In practice this value is tuned based on the scales
which contribute to CMB anisotropies. We find a weight of
" ¼ 0:25 is around optimal for improving the convergence
of the power spectra.

Since the correlation between scalars, vectors and ten-
sors vanishes we can perform the diagonalization on the
vector/tensor UETCs independently. However, for the sca-
lars we have two components of the energy-momentum
tensor, the density !00 and anisotropic stress !S, which
are correlated. In order to perform the decomposition for
scalars we therefore discretize theUETC on a 2n% 2n grid.
This has a 2% 2 block diagonal form, with the 00& 00 and
S& S components of (32) along the diagonal, and 00& S as
the off-diagonal components. After performing the eigen-
decomposition the first half of the eigenvector corresponds
to density, and the other half to the anisotropic stress.

This diagonalization procedure introduces a change
of basis. Since the eigenvectors are orthogonal, and the
Einstein-Boltzmann solver uses linear perturbation theory,
one can use each of these new basis functions as a source
term. This means we can simply modify the Einstein
equation sources according to

!ðk!Þ ! uðk!Þ
ðk!Þ"!1=2

: (33)

The total power spectrum is then found by summing over
all eigenmodes

C‘ ¼
Xn

i¼1

#iC
i
‘; (34)

where Ci
‘ are the individual power spectra of each eigen-

mode. In practice we order modes from the highest to
lowest eigenvalues and truncate the sum at a finite number
of modes (which gives the desired accuracy for C‘).
Although each of the eigenmodes is coherent, good con-
vergence can be obtained including only relatively few
modes in the sum.

B. CMB power spectrum

The Einstein-Boltzmann solver we use is the publicly
available CAMB code [56]. This has several advantages
over the CMBFAST [57] code which CMBACT is based on.
It has been tuned for efficiency and accuracy, and also uses

the OpenMP parallel framework. Our implementation is
based on the January 2012 version of the code.
The string eigenvector sources were next incorporated.

For scalars we also require the longitudinal component
of the velocity perturbation, !D. This can be derived
from the known components by solving the differential
equation [25]

_!D ¼&2H!D & k2

3

!
!D & _!00

H
&!00þ 2!S

"
; (35)

where overdots now represent differentiation with respect
to conformal time and H ¼ _a=a.
The CMB power spectra do not require any initial

spectrum to be specified since the sources are active and
are given by

CiðIÞ
‘ ¼ 2

$

Z
k2dk"iðIÞ

‘ ðk; !0Þ"iðIÞ
‘ ðk; !0Þ; (36)

where I ¼ S, V, T for the scalar, vector and tensor con-
tributions, and "i

‘ðk; !0Þ are the temperature/polarization
transfer functions for each mode. These transfer functions
can be found in detail, for example, in Ref. [58].
For our analysis we use the mean WMAP seven-year

cosmological parameters [59]; that is a baryon density
#bh

2 ¼ 0:02249, cold dark matter density #bh
2 ¼

0:1120, Hubble parameter H0 ¼ 70:4 km s&1 Mpc&1 and
an optical depth to reionization ! ¼ 0:088. We switch off
lensing of the CMB in order to directly compare results
with CMBACT. The same ‘‘default’’ set of string parameters
of v ¼ 0:65, % ¼ 0:13 and & ¼ 1:9 are used, again turning
off the time evolution of these and setting the decay
parameter to Lf ¼ 0:99 in CMBACT. We fix the string
tension to G' ¼ 2% 10&7, a limit which is allowed, for
the default parameters, by current CMB data [21].
As in the CMBACT implementation, we found it neces-

sary to adjust internal accuracy parameters of CAMB to
achieve the desired accuracy in the power spectrum. We
varied the number of terms in the Boltzmann hierarchy
and the ‘ mode spacing to compute the spectrum, but the
only adjustment we found necessary was to increase the
number of k modes for the CMB source functions. For
the aficionados, sufficient accuracy was achieved by set-
ting highaccuracydefault ¼ T and accuracyboost ¼ 1:5.
The TT, EE, BB and TE power spectra are shown in

Fig. 2, computing the UETCs on a 1024% 1024 grid in the
range k! ¼ ½10&4; 104), with logarithmic grid spacing, and
a weighting factor of " ¼ 0:25. The range and grid size of
the UETC were chosen so that the spectrum is insensitive
to increasing the range or number of grid points. The
weighting factor has been chosen to improve the conver-
gence of the spectrum for a finite number of modes.
We plot spectra truncating the eigenmode sum at 16, 32,

64, 128 and 256 modes, and also show the results from
CMBACT using 2000 network realizations. The convergence
rate depends on the particular spectrum of interest. In
general, polarization spectra converge more quickly since
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(aside from the reionization induced signal) they are
sourced only at last scattering. This means that a smaller
range of scales (and hence eigenmodes) contribute to the
source function, and the weighting factor is chosen to pref-
erentially reconstruct thesemodes. The vector B-mode spec-
trum, for example, converges in as little as 32 eigenmodes.
The scalar temperature signal, on the other hand, is sourced
both at last scattering and along the line of sight through the
integrated Sachs-Wolfe effect. This means a wider range of
eigenmodes contribute to the spectrum.

Plotting the difference of each spectra we find that 1%
level accuracy in the temperature power spectrum can
be achieved with 256 modes. On a 3.1 GHz Intel Xeon
CPU with eight threads, our code runs in !15 minutes. In
comparison, around 2000 network realizations are required
for CMBACT to achieve the same accuracy; on the same
CPU, running with only the single thread that is possible,
the computation time is !30 hours. If accuracy is only
required in the temperature power spectra at the 10% level,
such that 64 eigenmodes are required, our code takes!2:5
minutes with 16 threads. Given that strings are constrained
to <10% of the total temperature anisotropy of the CMB,
this level of accuracy is tolerable for parameter estimation

studies. For the first time it may be possible to explore the
string parameter space using MCMC methods.
Generally, the results from our code and CMBACT agree

very well, considering the two different implementations.
The only differences of note are a slight excess in power in
the CMBACT scalar and tensor temperature fluctuations
near the peak of the spectra, a slight excess in the low ‘
tensor E-mode polarization, and a small difference in the
tensor TE spectrum at ‘! 800. We have been unable to
reconcile these small differences by changing details of the
UETC grid, accuracy or increasing the number of modes.

C. Parameter dependence

With our code in hand, we can now begin to explore the
string model space. Some of these parameter dependences
have also been considered in Refs. [25,26,60]. The default
model is specified by v ¼ 0:65, ! ¼ 0:13 and " ¼ 1:9. In
each case we fix two of the parameters while varying the
other. We again compute the UETCs on a 1024# 1024
grid in the range k# ¼ ½10%4; 104& and a weighting of
$ ¼ 0:25, truncating the sum at 256 modes.
In Fig. 3 we show the total TT and BB power, normal-

izing the value of G% such that the TT power at ‘ ¼ 10 is

FIG. 2 (color online). Comparison with CMBACT. On the top panels we show scalars, in the middle vectors and on the bottom tensors.
From left to right we show the TT, EE, BB and TE power spectra. Results from CMBACT using 2000 network realizations are shown in
solid black, and from our code using the first 16 (dotted red), 32 (dashed blue), 64 (dot-dash green), 128 (dot-dot-dash magenta) and
256 eigenmodes (long-dashed cyan). We use string parameters of G% ¼ 2# 10%7, v ¼ 0:65, ! ¼ 0:13 and " ¼ 1:9.
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each case we fix two of the parameters while varying the
other. We again compute the UETCs on a 1024# 1024
grid in the range k# ¼ ½10%4; 104& and a weighting of
$ ¼ 0:25, truncating the sum at 256 modes.
In Fig. 3 we show the total TT and BB power, normal-

izing the value of G% such that the TT power at ‘ ¼ 10 is
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From left to right we show the TT, EE, BB and TE power spectra. Results from CMBACT using 2000 network realizations are shown in
solid black, and from our code using the first 16 (dotted red), 32 (dashed blue), 64 (dot-dash green), 128 (dot-dot-dash magenta) and
256 eigenmodes (long-dashed cyan). We use string parameters of G% ¼ 2# 10%7, v ¼ 0:65, ! ¼ 0:13 and " ¼ 1:9.
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►E.g. scalar spectra 

Black - CMBACT, 2000 realizations
Red - CAMBACT, 16 eigenmodes

Green - CAMBACT, 64 eigenmodes
Magenta - CAMBACT, 128 eigenmodes

►Incorporated into CAMB - CAMBACT

Cstring
` / (Gµ)2

(Avogoustidis et al 2012)

Health warning: CMBACT v3

Tuesday, 4 February 14



Some Numbers
►Running CMBACT for 2000 source realisations takes ~ 20 hours
►Impossible to run any sort of MCMC with Planck (other than fitting 

for the overall amplitude of a given spectrum)
►With CAMBACT we need somewhere between 50-100 eigenmodes 

for reasonable accuracy
►Each mode requires running CAMB for scalars, vectors and tensors 

(i.e. 150-300 CAMB evaluations)
►CAMB takes ~ 1 second to run, hence total CAMBACT computational 

time is several minutes 
►A big improvement, Planck MCMC implementation work in 

progress
►Philosophy - use USM, marginalize over string parameters 
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Abelian Higgs
►So far focused on USM case. Idea is to use simulations (both Nambu 

and Abelian-Higgs) to inform network parameters 
►State of the art Abelian-Higgs simulations have also been used for 

the Planck analysis
►Fields evolved on 10243 grid, starting from random initial conditions 

designed to mimic a phase transition
►Brief diffusive period ensures system rapidly reaches scaling 
►String cores are partially fattened to enlarge dynamical range
►Various runs performed to check results insensitive to string 

fattening parameter
►UETC’s calculated at regular intervals and used in CMBEASY code

(Bevis et al)
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Planck Constraints

Planck Collaboration: Cosmic strings and other topological defects
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Fig. 8. Marginalized constraints on f10 for topological defects from Planck data plus polarization from WMAP (Planck+WP). The left panel show
constraints on cosmic strings, with NAMBU in black dashed, AH-mimic in blue dotted and AH in red solid. The right panel show the constraints
on SL (blue dotted) and TX (black dashed) compared to AH (again solid red).
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Fig. 9. Marginalized constraints on f10 for topological defects with high-` CMB data from SPT and ACT added to the Planck + WP constraints
data (compare with constraints shown in Fig. 8). The left panel show constraints on cosmic strings, with NAMBU in black dashed, AH-mimic in
blue dotted and AH in red solid. The right panel show the constraints on SL (blue dotted) and TX (black dashed) compared to AH (solid red).

claimed result is due to foreground residuals or to the presence
of systematic e↵ects.

In order to validate the various non-Gaussian methods
that are described below, we instituted a series of Planck
String Challenges. These were blind tests employing post-
recombination string simulation maps with an unknown Gµ/c2,
co-added to a Gaussian CMB map, together with standard masks
and increasingly more realistic noise models. For calibrating the
non-Gaussian tests, several di↵erent string simulations were also
provided. In addition, 1000 ⇤CDM Gaussian maps, with simu-
lated noise and using the same mask, were provided for anal-
ysis purposes, notably for determining the variance of di↵erent
techniques. The aim has been to determine the sensitivity of the
proposed non-Gaussian tests and to see if the Gµ/c2 in the string
challenge map could be measured accurately. The results from
these challenges were an important part of the validation for each
of the methods described below. Planck simulation pipelines for
each of the component separation methods were also used to es-

timate realistic foreground residuals and were used to validate
non-Gaussian pipelines and to remove string signal bias.

4.2. Cosmic string bispectrum

4.2.1. Modal bispectrum methods

The CMB bispectrum is the three point correlator of the alm coef-
ficients, B`1`2`3m1m2m3 = a`1m1 a`2m2 a`3m3 . For the purposes of a search
for cosmic strings we assume the network cumulatively creates
a statistically isotropic signal, that is, we can employ the angle-
averaged reduced bispectrum b`1`2`3 , defined by

b`1`2`3 =
X

mi

h�2
`1`2`3
G`1`2`3m1m2m3

B`1`2`3m1m2m3
, (12)

where h`1`2`3 is a weakly scale-dependent geometrical factor and
G l1 l2 l3

m1m2m3 is the well-known Gaunt integral over three Y`ms that
can be expressed in terms of Wigner-3 j symbols. The CMB bis-
pectrum b`1`2`3 is defined on a tetrahedral domain of multipole
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Table 2. 95% upper limits on the constrained parameter f10 and the derived parameter Gµ/c2 for the five defect models discussed in the text. We
present limits using Planck and polarization information from WMAP (Planck +WP), and from also including high ` CMB information from ACT
and SPT (Planck +WP+highL).

Defect type . . . . . . . . . . . Planck+WP Planck+WP+highL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f10 Gµ/c2 f10 Gµ/c2

NAMBU . . . . . . . . . . . . . . . . . . . . . . . 0.015 1.5 ⇥ 10�7 0.010 1.3 ⇥ 10�7

AH-mimic . . . . . . . . . . . . . . . . . . . . . . 0.033 3.6 ⇥ 10�7 0.034 3.7 ⇥ 10�7

AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.028 3.2 ⇥ 10�7 0.024 3.0 ⇥ 10�7

SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.043 11.0 ⇥ 10�7 0.041 10.7 ⇥ 10�7

TX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.055 10.6 ⇥ 10�7 0.054 10.5 ⇥ 10�7

Table 3. Constraints on the fitted cosmological parameters in the case of Planck alone. It is clear from this that the fitted parameters are not
significantly a↵ected by the inclusion of defects.

Parameter . . . . . . . . NAMBU AH mimic AH SL TX

⌦bh2 . . . . . . . . . . . 0.0223 ± 0.0003 0.0223 ± 0.0003 0.0223 ± 0.0003 0.0223 ± 0.0003 0.0223 ± 0.0003
⌦ch2 . . . . . . . . . . . 0.119 ± 0.003 0.119 ± 0.003 0.119 ± 0.003 0.119 ± 0.003 0.119 ± 0.003
✓MC . . . . . . . . . . . . 1.0415 ± 0.0006 1.0415 ± 0.0006 1.0415 ± 0.0006 1.0415 ± 0.0006 1.0415 ± 0.0006
⌧ . . . . . . . . . . . . . . 0.089 ± 0.013 0.090 ± 0.013 0.090 ± 0.013 0.090 ± 0.013 0.088 ± 0.014
log(1010As) . . . . . . . 3.080 ± 0.027 3.080 ± 0.026 3.081 ± 0.025 3.081 ± 0.025 3.078 ± 0.028
ns . . . . . . . . . . . . . . 0.961 ± 0.007 0.963 ± 0.008 0.963 ± 0.008 0.964 ± 0.007 0.965 ± 0.008
H0 . . . . . . . . . . . . . 68.4 ± 1.3 68.3 ± 1.2 68.3 ± 1.3 68.2 ± 1.2 68.3 ± 1.2
Gµ/c2 . . . . . . . . . . < 1.5 ⇥ 10�7 < 3.6 ⇥ 10�7 < 3.2 ⇥ 10�7 < 1.10 ⇥ 10�6 < 1.06 ⇥ 10�6

f10 . . . . . . . . . . . . . < 0.015 < 0.033 < 0.028 < 0.043 < 0.055

AH field theory strings). The resulting constraints on the f10
parameter are given in Table 2 as well. For the conversion
into constraints on Gµ/c2 we have that for semilocal strings
Gµ10/c2 = 5.3⇥10�6 and for global texture Gµ10/c2 = 4.5⇥10�6,
cf Urrestilla et al. (2008). We notice that, as expected for a fixed
Gµ, semilocal strings lead to significantly less anisotropies than
cosmic strings (a factor of about 8 in the C`), and texture are sim-
ilar to the semilocal strings. We thus expect significantly weaker
constraints on Gµ for the SL and TX models, especially since
in addition the constraints on f10 for these models are weaker.
Indeed we find a 95% limit of Gµ/c2 < 1.10 ⇥ 10�6 for semilo-
cal strings and Gµ/c2 < 1.06 ⇥ 10�6 for global textures.

4. Non-Gaussian searches for cosmic defects

Cosmic strings and other topological defects generically create
non-Gaussian signatures in the cosmic microwave sky, counter-
parts of their inevitable impact on the CMB power spectrum.
This is a critical test of di↵erentiating defects from simple infla-
tion, while o↵ering the prospect of direct detection. Searches for
these non-Gaussian defect signatures are important for two key
reasons: on the one hand, constraints from the CMB power spec-
trum can be susceptible to degeneracies with cosmological pa-
rameters in the standard concordance model; on the other hand,
any apparent defect detection in the power spectrum should have
a well-defined prediction in higher-order correlators or other
non-Gaussian signals, and vice versa. Non-Gaussian tests can
also be used to distinguish cosmic defects from residual fore-
grounds or systematic contributions. Below we will present re-
sults from NG tests that seek strings in multipole space (bis-
pectrum) and in real space (Minkowski functionals), as well as
hybrid methods (wavelets).

4.1. Foregrounds, systematics and validation

It is well-known that the microwave sky contains not only the
CMB signal but also emission from di↵erent astrophysical con-
taminants. In particular, point source emission is expected to be
a special cause of confusion for cosmic defects, notably those
with high resolution signatures, such as cosmic strings. In addi-
tion, systematic e↵ects may also be present in the maps at a cer-
tain level. Therefore, before claiming a cosmological origin of a
given detection, alternative extrinsic sources should be investi-
gated and discarded. This can be done by performing a number
of consistency checks in the data, most of which are common
to the other non-Gaussianity papers, where they are discussed
in greater detail. Here, we provide a brief summary of the main
issues.

Foreground-cleaned CMB maps are provided using four dif-
ferent component separation techniques (for further details, see
Planck Collaboration XII 2013): SMICA (semi-blind approach);
NILC (internal linear combination in needlet space);SEVEM (in-
ternal template fitting); and Commander/Ruler (C-R, parametric
method). To demonstrate the robustness of a particular result,
it should be replicated with at least two di↵erent cleaned CMB
maps. The adoption of di↵erent masks that exclude di↵erent re-
gions of the sky (ranging from more aggressive to more conser-
vative) has been used to test the stability of non-Gaussian es-
timates. Another interesting test is the use of cleaned maps at
di↵erent frequencies (for instance, those provided by the SEVEM
foreground separation technique). A given detection should be
consistent at all frequencies, since the behaviour of contaminants
and systematic e↵ects will, in general, vary with frequency. A
further test is the study of noise maps constructed from the dif-
ference between two Planck maps (either at the same or at dif-
ferent frequencies) smoothed to the same resolution. These maps
will not contain the CMB signal and, therefore, any NG detec-
tion should vanish on them. The opposite would indicate that the
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►Additional parameter added to LCDM, fraction of strings at ` = 10

►Use same dataset/priors as in main cosmology paper 

Planck + WP + highL

►Limits on string tension significantly 
improved, e.g. in Nambu model string 
fraction <1%
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Fig. 10. Marginalized likelihoods for f10 and in the f10-⌦bh2

plane for the NAMBU model in blue and the AH mimic model
in red using Planck +WP. This is the strongest correlation with
any of the standard cosmological parameters

ilar to the semilocal strings. We thus expect significantly weaker
constraints on Gµ for the SL and TX models, especially since
in addition the constraints on f10 for these models are weaker.
Indeed we find a 95% limit of Gµ/c2 < 1.10 ⇥ 10�6 for semilo-
cal strings and Gµ/c2 < 1.06 ⇥ 10�6 for global textures.

4. Non-Gaussian searches for cosmic strings

Cosmic strings and other topological defects generically create
non-Gaussian signatures in the cosmic microwave sky, counter-
parts of their inevitable impact on the CMB power spectrum.
This is a critical test of di↵erentiating defects from simple infla-
tion, while o↵ering the prospect of direct detection. Searches for
these non-Gaussian defect signatures are important for two key
reasons: on the one hand, constraints from the CMB power spec-
trum can be susceptible to degeneracies with cosmological pa-
rameters in the standard concordance model; on the other hand,
any apparent defect detection in the power spectrum should have
a well-defined prediction in higher-order correlators or other
non-Gaussian signals, and vice versa. Non-Gaussian tests can
also be used to distinguish cosmic defects from residual fore-
grounds or systematic contributions. Below we will present re-
sults from NG tests that seek strings in multipole space (bis-
pectrum) and in real space (Minkowski functionals), as well as
hybrid methods (wavelets).

4.1. Foregrounds, systematics and validation

It is well-known that the microwave sky contains not only the
CMB signal but also emission from di↵erent astrophysical con-
taminants. In particular, point source emission is expected to be
a special cause of confusion for cosmic defects, notably those
with high resolution signatures, such as cosmic strings. In addi-
tion, systematic e↵ects may also be present in the maps at a cer-
tain level. Therefore, before claiming a cosmological origin of a
given detection, alternative extrinsic sources should be investi-
gated and discarded. This can be done by performing a number
of consistency checks in the data, most of which are common
to the other non-Gaussianity papers, where they are discussed
in greater detail. Here, we provide a brief summary of the main
issues.

Foreground-cleaned CMB maps are provided using four dif-
ferent component separation techniques (for further details, see
Planck Collaboration XII 2013): SMICA (semi-blind approach);
NILC (internal linear combination in needlet space);SEVEM (in-
ternal template fitting); and Commander/Ruler (C-R, parametric
method). To demonstrate the robustness of a particular result,
it should be replicated with at least two di↵erent cleaned CMB
maps. The adoption of di↵erent masks that exclude di↵erent re-
gions of the sky (ranging from more aggressive to more conser-
vative) has been used to test the stability of non-Gaussian es-
timates. Another interesting test is the use of cleaned maps at
di↵erent frequencies (for instance, those provided by the SEVEM
foreground separation technique). A given detection should be
consistent at all frequencies, since the behaviour of contaminants
and systematic e↵ects will, in general, vary with frequency. A
further test is the study of noise maps constructed from the dif-
ference between two Planck maps (either at the same or at dif-
ferent frequencies) smoothed to the same resolution. These maps
will not contain the CMB signal and, therefore, any NG detec-
tion should vanish on them. The opposite would indicate that the
claimed result is due to foreground residuals or to the presence
of systematic e↵ects.

In order to validate the various non-Gaussian methods
that are described below, we instituted a series of Planck
String Challenges. These were blind tests employing post-
recombination string simulation maps with an unknown Gµ/c2,
co-added to a Gaussian CMB map, together with standard masks
and increasingly more realistic noise models. For calibrating the
non-Gaussian tests, several di↵erent string simulations were also
provided. In addition, 1000 ⇤CDM Gaussian maps, with simu-
lated noise and using the same mask, were provided for anal-
ysis purposes, notably for determining the variance of di↵erent
techniques. The aim has been to determine the sensitivity of the
proposed non-Gaussian tests and to see if the Gµ/c2 in the string
challenge map could be measured accurately. The results from
these challenges were an important part of the validation for each
of the methods described below. Planck simulation pipelines for
each of the component separation methods were also used to es-
timate realistic foreground residuals and were used to validate
non-Gaussian pipelines and to remove string signal bias.

4.2. Cosmic string bispectrum

4.2.1. Modal bispectrum methods

The CMB bispectrum is the three point correlator of the alm coef-
ficients, B`1`2`3m1m2m3 = a`1m1 a`2m2 a`3m3 . For the purposes of a search
for cosmic strings we assume the network cumulatively creates
a statistically isotropic signal, that is, we can employ the angle-
averaged reduced bispectrum b`1`2`3 , defined by

b`1`2`3 =
X

mi

h�2
`1`2`3
G`1`2`3m1m2m3

B`1`2`3m1m2m3
, (12)

where h`1`2`3 is a weakly scale-dependent geometrical factor and
G l1 l2 l3

m1m2m3 is the well-known Gaunt integral over three Y`ms that
can be expressed in terms of Wigner-3 j symbols. The CMB bis-
pectrum b`1`2`3 is defined on a tetrahedral domain of multipole
triples {`1`2`3} satisfying both a triangle condition and ` < `max
set by the experimental resolution. When seeking the string bis-
pectrum bstring

`1`2`3
in the Planck data, we employ the following es-
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Planck Constraints
►Strings exhibit no significance correlations with any other 

cosmological parameter 
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Conclusions
►Planck has provided improved limits on strings
►Power spectrum gives 
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5. Conclusions

We have reviewed the signatures induced by cosmic strings in
the CMB and searched for these in the Planck data, resulting in
new more stringent constraints on the dimensionless string ten-
sion parameter Gµ/c2. A pre-requisite for accurate constraints
on cosmic strings is a quantitative understanding of both cosmo-
logical string network evolution and the e↵ects they induce in
the CMB. These are computationally demanding problems but
progress has been made recently on several fronts: First, high
resolution simulations of Nambu-Goto strings have yielded ro-
bust results for the scale-invariant properties of string networks
on large scales, while there has been increasing convergence
about small-scale structure and loops (for which the CMB pre-
dictions are less sensitive). Secondly, post-recombination grav-
itational e↵ects of strings have been incorporated into full-
sky Planck resolution CMB temperature maps that are impor-
tant for validating non-Gaussian search methods. Finally, fast
Boltzmann pipelines to calculate CMB power spectra induced by
causal sources have been developed and tested at high resolution,
whether for field theory simulations of strings or textures or for
models of Nambu-Goto strings. Three-dimensional field theory
simulations of vortex-strings at su�cient resolution should, in
principle, converge towards the one-dimensional Nambu-Goto
string simulations, but testing this is not numerically feasible
at present. For this reason, we believe it is prudent to also in-
clude constraints on field theory strings (labelled GµAH), thus
encompassing cosmic string models for which radiative e↵ects
are important at late times (such as global strings). We believe
this brackets the important theoretical uncertainties that remain,
that is, we have used the best available information to constrain
both Nambu-Goto strings (NAMBU) and field theory strings
(AH). This work has also obtained more stringent constraints
on semilocal strings and global textures.

5.1. Cosmic string constraints and the CMB power spectrum

Accurate forecasts for the CMB power spectrum induced by cos-
mic strings are more di�cult to compute than their equivalent
for simple adiabatic inflationary scenarios. It requires knowledge
of the source, quantified by the unequal-time correlator (UETC)
of the defect stress-energy tensor, from well before recombina-
tion to the present day, which is not computationally feasible.
Fortunately, we can exploit scale-invariant string evolution to
extrapolate the results of simulations with substantially smaller
dynamic range. We use two methods to obtain predictions for
the UETCs. An unconnected segment model (USM) is used to
model the properties of an evolving string network, determin-
ing its density from an analytic one-scale evolution model, and
the sources are coupled to the line-of-sight Boltzmann solver
CMBACT. A second independent pipeline measures the UETCs
directly from string simulations in the abelian-Higgs field the-
ory, passing these to a modified form of the CMBEASY Boltzmann
code. The resulting Nambu-Goto and abelian-Higgs string CMB
power spectra are illustrated in Fig. 3. Free parameters in the
USM model can be chosen to phenomenologically match the
field theory UETCs (denoted the AH-mimic model) and the
comparison is also shown in Fig. 3, validating the two indepen-
dent pipelines.

To compute constraints on cosmic string scenarios we have
added the angular power spectrum to that for a simple adia-
batic model, assuming that they are uncorrelated, with the frac-
tion of the spectrum contributed by cosmic strings being f10 at
` = 10. This has been added to the standard 6 parameter fit using

COSMOMCwith flat priors. For the USM models we have obtained
the constraint for the Nambu-Goto string model

Gµ/c2 < 1.5 ⇥ 10�7 , f10 < 0.015 , (22)

while for the abelian-Higgs field theory model we find,

GµAH/c2 < 3.2 ⇥ 10�7 , f10 < 0.028 . (23)

The marginalized likelihoods for f10 and in the f10–⌦bh2 plane
were presented in Fig. 10. With Planck nominal mission data
these limits are already about a factor of two more stringent
than the comparable WMAP 7-year string constraints and these
Planck limits improve further with the inclusion of high-` data.

5.2. Non-Gaussian searches for cosmic strings

Complementary searches for non-Gaussian signatures from cos-
mic strings were performed and we have reported constraints
from the string bispectrum, steerable wavelets and Minkowski
functionals. These methods participated in the Planck String
Challenges and have undergone non-Gaussian validation tests.

The post-recombination string bispectrum has been recon-
structed and calibrated from string-induced CMB maps using a
modal estimator. String Challenge analysis with Planck-realistic
noise simulations and mask indicated a nominal mission sen-
sitivity of �Gµ/c2 ⇡ 5.8 ⇥ 10�7. Analysis of SMICA, NILC and
SEVEM foreground-separated maps has yielded fNL = 0.37±0.21
for the string bispectrum shape, which translates into a bispec-
trum constraint on the string tension, Gµ/c2 < 8.8 ⇥ 10�7 (95 %
CL). Steerable wavelet methods have been calibrated on string
simulation maps added to Gaussian CMB maps with realistic
noise and masking, showing a sensitivity of up to �Gµ/c2 ⇡
4 ⇥ 10�7. The string signal was shown to have greater impact
on the kurtosis of the signed-intensity than on its skewness,
and no evidence of a string signal was found in the Planck
data. Minkowski functionals have been applied to string sim-
ulation maps in a Planck-realistic context, computing the four
functionals—area, perimeter, genus and Ncluster—after applica-
tion of Weiner filters. Using these distributions, a Bayesian es-
timator has been constructed to constrain the string tension.
Analysis of the SMICA foreground-cleaned maps yielded a MF
constraint of Gµ/c2 < 7.8 ⇥ 10�7 (95 % CL).

Non-Gaussian searches for strings are complementary to the
power spectrum analysis and yield constraints as low as Gµ/c2 <
7.8 ⇥ 10�7, though we note the potential impact of foreground
residuals in limiting current precision. These are conservative
upper bounds because they only include post-recombination
string contributions, unlike the string power spectrum analy-
sis. Having such a broad suite of tools, ranging from multipole
space, through wavelets, to real space detection methods, allows
cross-validation and reinforces the conclusion that there is at
present no evidence for cosmic strings in the Planck nominal
mission data.
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the Nambu and AH models with the value of G!=c2 set to
their respective upper limits. These spectra are very differ-
ent to those predicted in by inflationary models parame-

terized by the scalar-to-tensor ratio, r which are also
included in the figure. In fact, the spectra for ‘ > 30 are
similar to that produced by gravitational lensing particu-
larly for te Nambu case. This is because the B-mode
polarization is created along the line of sight, albeit on
different scales to the gravitational lensing of the primary
E-mode signal. These spectra comprise a white noise por-
tion and a peak corresponding to the dominant scale which
is on slightly larger scales in the AH model and, by
coincidence, very similar to the lensing for the Nambu
model. For the Nambu case this similarity will make
them difficult to detect unless one can detect the analogue
of the reionization bump which peaks around ‘ ! 10. It is,
however, interesting since most inflationary models which
produce strings create very low levels of gravitational
waves. It has been shown that it is possible to discriminated
them in the AH case [72].
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FIG. 6 (color online). B-mode polarization power spectra from
strings, tensors and gravitational lensing. For the string spectra,
we use values of G!=c2 corresponding to the 2" upper limit
from CMBþ SDSS data, that is. G!=c2 ¼ 2:6$ 10%7 for the
USM Nambu model (solid line) and 6:4$ 10%7 for the AH case
(dotted line). We also show the inflationary primordial tensor
spectrum with r ¼ 0:1 at k ¼ 0:05 Mpc%1 (short-dashed line)
and r ¼ 0:01 (long-dashed line). Finally, we show the gravita-
tional lensing spectrum generated from E-mode mixing (dot-
dashed line) expected in the inflationary model.
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