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MOTIVATIONS

Consider a large network of one-dimensional objects such as
I cosmic strings after phase transition
I fundamental strings near Hagedorn temperature
I topological strings in nematic liquid crystal
I chain molecules in a polymer, etc.

If the system is not too large one can study it using simulations.
But what if the number of relevant d.o.f. is 101010...

?

The standard approach would be to use equilibrium SM, but

I system might be out of equilibrium
I ergodic hypothesis might be violated
I dynamics might be non-Hamiltonian
I partition function might diverge, etc.



INTRODUCTION NAMBU-GOTO STRINGS TRANSPORT EQUATION CONSERVATION EQUATIONS SUMMARY



INTRODUCTION NAMBU-GOTO STRINGS TRANSPORT EQUATION CONSERVATION EQUATIONS SUMMARY

There are at least three more (not unrelated) options:
I Kinetic theory→ this talk :)

[Barrabes, Israel, 1987; Lowe, Thorlacius, 1995; V.V. 2011; V.V. 2013; Schubring, V.V. 2013]

I Derive a transport equation for distribution of string segments by
considering the dynamics and interactions of individual strings.

I Solve the equation to study the evolution of the systems towards
an equilibrium or a steady state which may or may not be unique.

I Fluid mechanics→ next talk :)
[Stachel, 1980; Carter, 1990; V.V. 2013; Schubring, V.V. 2013]

I Coarse-grain the network of strings and treat it as fluid described
by fields such as energy density, velocity, tangent vector, etc.

I Derive inviscid fluid eqs. for these fields by considering flows of
conserved quantities such as energy, momentum, tangent vectors.

I Field theory→ no talk :(
[Carter, 1989; Kopczynski, 1989; Schubring, V.V. 2014]

I Construct a Lagrangian describing the fluid and add interactions
to describe higher order effects of the transport equation.

I Drive the modified conservation equation (for viscous fluid) by
considering the diffeomorphism invariance of the Lagrangian.
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COORDINATES FOR A SINGLE STRING
Consider a single world-sheet described by Nambu-Goto action

SNG = −
∫ √

−det(hab)d2ζ (1)

where hab ≡ gµν ∂xµ

∂ζa
∂xν

∂ζb (with tension set to unity T = 1
2πα′ = 1.)

In light-cone coordinates ζ1, ζ2 the EOM:

Aµ∇µBν = 0 Bµ∇µAν = 0 (2)

where Aµ ≡ ∂xµ

∂ζ1 , Bµ ≡ ∂xµ

∂ζ2 are coord. basis vectors since [A,B] = 0.
The energy momentum tensor

Tµν
√
−g ≡

∫
T̃µνδ(4)(yσ − xσ) (3)

is then

T̃µν = hab ∂xµ

∂ζa
∂xν

∂ζb

√
−det(hab) d2ζ = 2A(µBν) d2ζ . (4)
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COORDINATES FOR A NETWORK OF STRINGS
Remaining gauge freedom can be removed by defining

Aµ ≡ A
µ

A0 Bµ ≡ B
µ

B0 , (5)

vµ ≡ 1
2

(Bµ + Aµ) εuµ ≡ ε1
2

(Bµ − Aµ) (6)

and demanding that vµ and εuµ are coord. basis vectors (for τ and σ)

[v, εu] = 0. (7)

Then the equations of motion become

Bλ∇λAν =
ε̇

ε
Aν Aλ∇λBν =

ε̇

ε
Bν (8)

where ∂ε
∂τ = ε̇ ≡ vµ∂µε and ε̇

ε = −Γ0
λµBλAµ. Then

T̃µν = (vµvν − uµuν) ε dτdσ = A(µBν) ε dτdσ = A(µBν)T̃00 (9)
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CONSERVATION EQUATIONS

Given a network of many interacting strings, the energy density can
be used to form coarse-grained fields such as

Tµν = 〈A(µBν)〉 Fµν = 〈A[µBν]〉 (10)

One can show [Schubring, VV 2013] that

∇νTµν = 0 ∇νFµν = 0 (11)

For example, ∇νF0ν = 0 implies continuity of strings:

∇ · 〈u〉 = 0 (12)

The two conservation equations can also be rewritten as

∇ν〈AµBν〉 = 0 ∇ν〈BµAν〉 = 0 (13)

Note that these equations are exact since no assumptions were made.
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DISTRIBUTION FUNCTION
I Conservation equations constrain the dynamics of string fluid

but do not describe evolution towards equilibrium.
I In kinetic theory [VV 2013] one first derives a transport equation

for distribution f (A,B, x) defined on Ω2 ×M ≡ S2 × S2 ×M.
I Then coarse-grained quantities are given by

〈Q〉(x) =
∫

Q(A,B)f (A,B, x) dΩ2. (14)

I Energy density
ρ(x) = 〈1〉 (15)

I Probability that random (A,B) rays are in a set X ⊆ Ω

p[(A,B) ∈ X] =
1
ρ

∫
X

f (A,B)dΩ2 (16)

I For homogeneous eq. we make string chaos assumption [VV 2011]

p(A1,B1|A2,B2|...) ≈ p(A1,B1)p(A2,B2)... (17)

that can be justified both analytically [Schubring, VV 2013] and
numerically [Balma, Schubring, VV 2014].
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LONGITUDINAL COLLISIONS
With the string chaos assumption longitudinal collisions give

f (A,B, t + ∆t) =
∫

dΩ′2 f (A,B′, t)
f (A′,B, t)
ρ(t)

. (18)

Expanding to linear order in time,

∂f
∂t

=
1
ρ

∫
dΩ′2 Γ · [f (A,B′)f (A′,B)− f (A,B)f (A′,B′)]. (19)

where 1/Γ = ∆t is the equilibration time or correlation length.

σ

τ

B' B

B

B'' B' B

B(3) B'' B'

A'A
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A A' A''
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TRANSVERSE COLLISIONS
I Transverse collisions will contribute to the energy density f (A,B)

with two terms similar to longitudinal terms.
I So we just expect transverse collisions to add a contribution

Γ =
1

∆t
→ Γ =

1
∆t

+ Γ⊥ (20)

where
Γ⊥ ∝ ρ|A ∧ B ∧ A′ ∧ B′|. (21)

I This can also be rewritten in terms of the three-velocities and
tangent vectors of the interacting segments

Γ⊥ ∝ ρ|(v′ − v) · (u′ × u)|. (22)

I By denoting the proportionality constant as p (which may also
include the inter-commutation probability if desired)

Γ =
1

∆t
+ pρ|A ∧ B′ ∧ A′ ∧ B|. (23)



INTRODUCTION NAMBU-GOTO STRINGS TRANSPORT EQUATION CONSERVATION EQUATIONS SUMMARY

H-THEOREM

I Then one can prove H-theorem for strings [VV 2013]

dH
dt
≤ 0 ≤ dS

dt
, (24)

H(t) ≡
∫

dΩ2f (A,B) log(f (A,B) ≡ −S(t) (25)

which a stringy version of the second law of thermodynamics.
I One can also show [VV 2013] that the distribution relaxes to an

equilibrium state with independent statistics of A and B:

lim
t→∞

f (A,B, t) =
1
ρ

∫
dΩ′2 f (A,B′)f (A′,B) (26)

or
feq(A,B) = fA(A)fB(B) (27)

I This allows a significant simplification of the conservation
equation leading to a non-viscous string fluid dynamics.
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INHOMOGENEOUS LIMIT

I Spatially homogenous transport equation trivially agrees with

∇ν〈AµBν〉 = 0 ∇ν〈BµAν〉 = 0 (28)

and the next step is to introduce spatial variations.
I For example, one can derive an equation for f (A,B, x) by

considering motion of (A,B) segments with velocity v = A+B
2 .

I This leads to the correct conservation of energy [VV 2013]

∂ρ

∂t
+

∂

∂xk 〈v
k〉 = 0, (29)

but does not respect the conservations of A and B fields,

∂

∂t
〈Ai〉+

∂

∂xk 〈A
iBk〉 = 0

∂

∂t
〈Bi〉+

∂

∂xk 〈B
iAk〉 = 0 (30)

I This is a real problem if one wants to use the transport equation
to derive viscous string fluid equations.
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TRANSPORT EQUATION
I The problem is that equations of motion imply that quantities Ai

move through space in the direction of B, and vise versa.
I Then the correct difference equation [Schubring, VV 2103]

f (A,B, x, t + ∆t) =
∫

dΩ′2 f (A,B′, x−B′∆t, t)
f (A′,B, x− A′∆t, t)
ρ−∇ · 〈v〉∆t

.

(31)
and the spatial variations are described with an integral term(

∂f
∂t

)
spatial

= −1
ρ

∫
dΩ′2 f (A,B′)

←→
∇ f (A′,B) (32)

where
←→
∇ ≡

←−
∇ · B′ + A′ ·

−→
∇ − 1

ρ
∇ · 〈v〉 (33)

I This leads to the transport equation which gives rise to
conservation equations in complete agreement with

∇ν〈AµBν〉 = 0 ∇ν〈BµAν〉 = 0 (34)
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FRIEDMANN UNIVERSE
I Friedmann metric in conformal coordinates

ds2 = a2(τ)(dτ 2 − dx2) (35)

whereH ≡ ȧ/a is the Hubble constant.
I Then the equations of motions

Bµ∂µAi = −H(Bi − (A · B)Ai) (36)

Aµ∂µBi = −H(Ai − (A · B)Bi). (37)
and the change in energy density reduces to,

ε̇

ε
= −H(1 + A · B). (38)

I After somewhat tedious calculations one can show that(
∂f
∂t

)
gravitational

= H (∂A + ∂B − (1 + A · B)− 4A · B) f (39)

where
∂A ≡ (B− (A · B)A) · ∂

∂A
(40)
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FLUID EQUATIONS

I To verify the conservation equation, we integrate the
gravitational terms multiplied by a function Q(A,B):

H
∫

Q(∂Af + ∂Bf ) dΩ2 −H〈Q(1 + A · B)〉 − 4H〈Q(A · B)〉 (41)

I After integrating by parts and some algebra this becomes,

−H〈∂AQ + ∂BQ〉 − H〈Q(1 + A · B)〉 (42)

I Choosing Q to be 1, Ai, Bi we obtain the gravitational correction
to the conservation equations,

∂ν〈vν〉 = −H〈1 + A · B〉 (43)

∂ν〈AiBν〉 = −2H〈vi〉 (44)

∂ν〈BiAν〉 = −2H〈vi〉 (45)

in full agreement with fluid approach [Schubring, VV 2013].
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SUMMARY OF RESULTS
Derived a transport equation in the homogeneous limit:

∂f
∂t

=
1
ρ

∫
dΩ′2 Γ · [f (A,B′)f (A′,B)− f (A,B)f (A′,B′)]

where Γ = 1
∆t + pρ|A ∧ B′ ∧ A′ ∧ B| .

Proved an H-theorem and derived a local equilibrium distribution:

dH
dt
≤ 0 ⇔ feq(A,B) = fA(A)fB(B)

Constructed a correction to the transport eq. due to spatial variations:(
∂f
∂t

)
spatial

= −1
ρ

∫
dΩ′2 f (A,B′)(

←−
∇ · B′ + A′ ·

−→
∇ − 1

ρ
∇ · 〈v〉)f (A′,B).

Showed that gravitational terms are consistent with conservation eq.:(
∂f
∂t

)
gravitational

= H (∂A + ∂B − (1 + A · B)− 4A · B) f
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