


Abelian Higgs Model 

Modified equation of  motion in FRW (Press,Ryden,Spergel (1989)): 
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Then to obtain equations that preserve Gauss’ law automatically and give with the desrived

level of slimming, the action is varied with these coupling coefficients treated as functions

of time. Treating Aµ as the variable with respect to which the action is minimised, then

rewrite the previous expression as:
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Via use of the gauge choice, the dependence of the electric term on e is manifest, and this

is the only term for which its time dependence is relevant. For the other terms involving

Aj, the is no time derivative of the field and therefore during the integration by parts,

they is no time derivative of the term. The only change is a common factor of e due to

the change of variation variable, but this cancels. The result of the minimization is hence:
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with an addition term in ė with a coefficient of −2 resulting from the index in the action

expression. Now, using the rescaled field strength and the power-law form of e, then

enables the dynamical equation for the gauge field to be written in the form:
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ȧ
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0 Im [φ∗Djφ] . (7.3.15)

The affect of the changing λ is trivial however, as the corresponding term contains no

derivatives, and therefore the original φ equation is maintained, but with λ now undergoing

temporal variation as specified:
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Hence, for s = 1 the true equations are returned, which conserve energy and momentum

on account that the action is a scalar. For s "= 1, the action is a function a time and

covariant energy conservation is broken. For s = 0, the φ equation matches that Moore and

coauthors, but the gauge field dynamics include an additional damping term. Returning

to the equation for the violation of Gauss’ law by the Moore et al. equations, Equation

(7.3.10), this additional term adds to the left-hand-side to give preservation.
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(7.3.17)
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LAH 
(Lattice Abelian Higgs) 

Time update using leapfrog algorithm  
(to ensure energy conservation (discrete version) 

θ1,x

θ2,x

θ1,x+2

θ2,x+1

φx φx+1

φx+2 φx+1+2



LATfield2d 
A C++ framework for parallel field simulations.  

LATfield2d is a (extensive) rewrite of  LATfield (Neil Bevis, Mark 
Hindmarsh). The parallelization and the I/O has been entirely 
modified. (www.latfield.org) 
LATfield2d scatters n-dimensional lattices into a 2d grid of  MPI 
processes (rod decomposition). 

Lattice: “Cartesian static mesh” 

Example:  
 
3d lattice with 32 points in 
each dimension. 
 
Scatter into 16 processes with 
the geometry 4x4 



LATfield2d contains a FFT wrapper (based on 
FFTW) for 3d cubic lattices. 

(Tested up to 40963 points with 32768 cores) 

LATfield2d supports 3 I/O line (serial, parallel, I/O server). 
Simple HDF5 wrapper (fields written with 1 command) 

I/O 

Benchmark on Piz Daint 
(Cray XC30, CSCS, 
Switzerland)  
Maximal bandwidth 
(32768  compute cores, 
2048 I/O cores, 80 
stripes): 
  

Parallel I/O (HDF5) 8.7 Gb/s 

I/O server: 

Compute to I/O cores 2.6 Tb/s 

I/O cores to disk 8.3 Gb/s 

LATfield2d 
A C++ framework for parallel field simulations.  

Fast Fourier Transform 



Simulation 
�  2012-2013 (Monte Rosa)  4.8 Mio CPU hours  

�  2013-2014 (Piz Daint & Monte Rosa) 28 Mio CPU hours 

 
�  7 Matter and 7 Radiation runs at 40963 (s=0) 

�  Resolution tests 

�  6 Matter and 6 Radiation Run with s=1 (plan 8 runs) 

�  Radiation-Matter transition runs 

This work was supported by the Swiss 
National Supercomputing Centre (CSCS) 

under project ID s319 



Simulation Numbers 

Lattice size 4096^3 

Number of  float pro sites 
In memory 

40 

Memory usage 10 Tb 

FFT (size) 2.5 Tb 

FFT (number) 150 

FFT (total) 0.375 Pb 

Compute cores 32768 

I/O cores 2048 

1 run cost ~380k CPU hours (on XC30) 



Simulation Outputs 
•  Unequal time correlators (Jon’s talk)  
•  Winding plaquettes: Decrease the 

amount of  disk usage by a factor 105! 
  

Snapshot 
size 

Total (1 run) 

Energy 
Momentum 
Tensor (EMT) 

 
2.5Tb 

 
2.2 Pb 

Windings with 
EMT 

0.5 Gb 
(at tref) 

25-50 Gb 



Loop distribution 
(Very Preliminary) 

Commoving length, conformal time  



Video 


