Highly Excited Strings in String Perturbation Theory

Dimitri Skliros (Nottingham)

COSMIC STRINGS 2014 ASU & TUFTS workshop, Feb 3-5, Tempe, Arizona

Motivation

Highly excited superstrings (HES) form a benchmark of string theory.

They are related to the UV finiteness, play key role in regions of strong gravity (e.g. singularities¹, early universe², black holes³), provide a source of non-locality (desirable⁴ e.g. in resolving information paradox), and their properties may even lead to string theory signatures, e.g. in context of COSMIC SUPERSTRINGS²).

¹Horowitz, Steif (1997); ...

 2 Amati, Ciafaloni, Veneziano (1988); D'Appollonio, Di Vecchia, Russo Veneziano (2013); \ldots

⁴Susskind (1995); Low, Polchinski, Susskind, ..., (1997); Giddings (2007); Hartman, Maldacena (2013)...

²Sen (1998); Dvali & Vilenkin (2004); Copeland, Myers, Polchinski (2004); Hindmarsh (2011); DS, Copeland, Saffin (2013); ...

Cosmic String Zoo

Compactifications of string theory lead to many potential cosmic string candidates (see e.g. Tye's talk):⁵

- F-strings
- D-strings
- (p, q)-strings
- wrapped D-branes
- solitonic strings
- electric and magnetic flux tubes

⁵Dvali, Vilenkin (2004); Copeland, Myers, Polchinski (2004); Polchinski (2006); Banks, Seiberg (2011)

Cosmic String Zoo

Compactifications of string theory lead to many potential cosmic string candidates (see e.g. Tye's talk):⁶

- D-strings
- (p, q)-strings
- wrapped D-branes
- solitonic strings
- electric and magnetic flux tubes

⁶Sarangi, Tye (2002); Dvali, Vilenkin (2004); Copeland, Myers, Polchinski (2004); Polchinski (2006); Banks, Seiberg (2011)

Effective Theory Approach

Traditionally one discusses CS in terms of effective theory (EFT).

Although these EFTs often follow from defining string theory equations,⁷ the assumptions adopted to derive⁸ them also highlight their weaknesses and limited applicability.

E.g., they do not capture truly stringy features, such as:

- couplings to infinite set of oscillator states (e.g. relevant for cusp emission)
- inherently QM processes (e.g. string inter-commutations)
- break down at small scales (e.g. relevant for loop production)

$${}^7\sum_h\int \mathcal{D}(Xg)e^{iS_{
m Polyakov}}\simeq\int \mathcal{D}(GB\Phi\dots)e^{iS_{
m eff}}$$

8 Tseytlin (1991)

HES in String Theory

Going beyond EFTs ...

In perturbative string theory one speaks in terms of vertex operators, D-branes, and scattering amplitudes.

New efficient tools appropriate for HES now available, making computations with HES tractable and efficient!⁹

 \Rightarrow Trick is to consider strings in a coherent state basis where calculations become efficient and tractable¹⁰ ..

⁹Skliros, Hindmarsh (2011); Hindmarsh, Skliros (2011)
 ¹⁰Skliros, Copeland, Saffin (2013)

Coherent Vertex Operators

Definition of closed string coherent state:

- (a) is specified by a (possibly infinite) set of continuous labels $(\lambda, \bar{\lambda})$, which may be associated to the left- and right-moving modes;
- (b) produces a resolution of unity,

$$1 = \sum \int d\lambda dar{\lambda} |\lambda,ar{\lambda};\dots
angle \langle\lambda,ar{\lambda};\dots|,$$

so that the |λ, λ;...⟩ span the string Hilbert space. The dots
"..." denote possible additional quantum numbers;
(c) transforms correctly under all symmetries of the string theory

Coherent Vertex Operators

To construct covariant coherent vertex operators (CVO):

- 1. excite string ground state, $V_{\text{ground state}}$, with massless states, V_{massless} , of momenta $k = n_i q$, with $q^2 = 0$, $n_i \in \mathbb{Z}^+$
- 2. sum over resulting excited states, $V_{\text{excited}}^{(r)}$, ie sum over r

With appropriate combinatorial coefficients, c_r , in sum, resulting state $V = \sum_r c_r V_{\text{excited}}^{(r)}$ satisfies above definition of CVOs

Classical-Quantum Map

Given any classical solution, there is a one-to-one map to the corresponding quantum coherent vertex ${\rm operators}^{11}$

For example,¹²

$$X(z,\bar{z}) = \frac{i}{n} \left(\lambda_n \, z^{-n} - \lambda_n^* \, z^n \right) + \frac{i}{m} \left(\bar{\lambda}_m \, \bar{z}^{-m} - \, \bar{\lambda}_m^* \, \bar{z}^m \right),$$

corresponds to CVO,¹³

$$V(z,\bar{z}) = : C \int_0^{2\pi} ds \exp\left(\frac{i}{n} e^{ins} \lambda_n \cdot D_z^n X e^{-inq \cdot X(z)}\right)$$
$$\times \exp\left(\frac{i}{m} e^{-ims} \bar{\lambda}_m \cdot \bar{D}_{\bar{z}}^m X e^{-imq \cdot X(\bar{z})}\right) e^{ip \cdot X(z,\bar{z})}$$

¹¹Hindmarsh & Skliros PRL (2011)

 ^{12}X spacetime embedding; z, \bar{z} worldsheet coordinates; p momenta; $\lambda_n, \bar{\lambda}_n$ polarisation tensors; n harmonics

¹³Skliros & Hindmarsh (2011)

HES Decay and Radiaton

We here compute decay rates and power associated to massless emission for special class of HES states in IR (on $\mathbb{R}^{D-1,1} \times T^{26-D}$)

Some History First

A handful of references on decay rates of HES:

- Wilkinson, Turok, Mitchell (1990): Locing Regge (bosonic) states, $\mathbb{R}^{25,1}$, (numerical), $\Gamma_{d=4} \propto L$ and $\Gamma_{d=26} \propto L^{-1}$
- Dabholkar, Mandal, Ramadevi (1998): higher genus bound on leading Regge Heterotic states, $\mathbb{R}^{3,1} \times T^6$, $\Gamma \lesssim M^{-1}$
- lengo, Russo (2002-6); Chialva, lengo, Russo (2004-5): leading: <u>Regge</u> superstring states, ℝ^{D-1,1} × T^{10-D}, (numerical),

$$\Gamma \sim G_D \mu^2 L^{5-D}, \qquad \mu = 1/2\pi \alpha'$$

- Gutplerle & Krym (2006); leading Regge Heterotic states, $\mathbb{R}^{8,1} \times S^1$, (numerical)

Simplest Example

When only first harmonics are present,

$$V = \int_0^{2\pi} ds \exp\left(e^{is}i\zeta \cdot \partial_z X e^{-iq \cdot X}\right) \exp\left(e^{-is}i\overline{\zeta} \cdot \partial_{\overline{z}} X e^{-iq \cdot X}\right) e^{ip \cdot X}$$

These correspond to *leading Regge* trajectories, with,

$$\zeta_\mu \equiv \lambda^i (\delta^i_\mu - {
ho}^i q_\mu), \qquad L^2 = rac{16\pi}{\mu} ig(|\zeta|-1ig), \qquad |\zeta| \in \mathbb{R}^+$$

The classical analogue reads:

$$X(z,ar z)=iig(\lambda\,z^{-1}\!\!-\lambda^*\,z^1ig)+iig(ar\lambda\,ar z^{-1}\!\!-ar\lambda^*\,ar z^1ig),$$

Massless Radiation: Results For massless radiation (i.e. $m_1^2 = 0$) from above CVO vertices. In the IR the result ressums:¹⁴

$$\begin{aligned} \frac{dP}{d\Omega_{S^{D-2}}}\Big|_{m_{1}^{2}=0} &= \sum_{N} \frac{16\pi G_{D}\mu^{2}}{(2\pi)^{D-4}} \,\omega^{D-4-\delta} N^{2} \\ & \left[J'_{N}^{2}(A) + \left((N/A)^{2} - 1 \right) J_{N}^{2}(A) + \mathcal{O}(1/(\alpha'M^{2})) \right] \\ & \left[J'_{N}^{2}(\bar{A}) + \left((N/\bar{A})^{2} - 1 \right) J_{N}^{2}(\bar{A}) + \mathcal{O}(1/(\alpha'M^{2})) \right] \end{aligned}$$

where the frequency of emitted radiation,¹⁵

$$\omega = \frac{4\pi N}{L}$$
, with $N = 1, 2, \dots$

Taking $\delta = 1$ yields a decay rate, $\delta = 0$ yields a power.

¹⁴DS, Copeland and Saffin (PRL 2013)

¹⁵Here $A = N\sqrt{2}|\hat{\mathbb{P}} \cdot \hat{\lambda}_1|$, $\bar{A} = N\sqrt{2}|\hat{\mathbb{P}} \cdot \hat{\lambda}_1|$, the $J_n(z)$ are Bessel and $M = \mu L$, $\mu = 1/(2\pi\alpha')$

Effective Description

The above power was shown¹⁶ to agree precisely with that associated to the effective theory,

$$S_{\text{eff}} = \frac{1}{16\pi G_D} \int d^D x \sqrt{-G} e^{-2\Phi} \Big(R_{(D)} + 4(\nabla \Phi)^2 - \frac{1}{12} H_{(3)}^2 + \dots \Big) \\ - \mu \int_{S^2} \partial X^\mu \wedge \bar{\partial} X^\nu \big(G_{\mu\nu} + B_{\mu\nu} \big) + \dots,$$

where Φ , $G_{\mu\nu}$ and $H_{(3)}$ are the dilaton, spacetime metric and 3-form field strength, H = dB, respectively

(We plug classical solutions for X (from classical-CVO map) and compute perturbations in G, B and Φ)

¹⁶DS, Copeland and Saffin (PRL 2013)

Higher Harmonics

... the above correspondence acts as a guiding principle to write down the general result for arbitrary harmonics (n, m):¹⁷

$$\frac{dP}{d\Omega_{S^{D-2}}}\Big|_{m_{1}^{2}=0} = \sum_{N} \frac{16\pi G_{D}\mu^{2}}{(2\pi)^{D-4}} \omega^{D-4-\delta} (Nuwg)^{2} \\ \left[J'_{Nw}^{2}(A) + \left((Nw/A)^{2} - 1\right)J_{Nw}^{2}(A)\right] \\ \left[J'_{Nu}^{2}(\bar{A}) + \left((Nu/\bar{A})^{2} - 1\right)J_{Nu}^{2}(\bar{A})\right]$$

with $n \equiv gu$, $m \equiv gw$, integers and u, w relatively prime. (g can be interpreted as a winding number: $M \sim g\mathcal{R}/\alpha'$, with effective radius, \mathcal{R} , determined by dynamics.)

 $\frac{17}{\mathsf{Here}\;A} = Nw\sqrt{2}|\hat{\mathbb{P}}\cdot\hat{\lambda}_{n}|,\;\bar{A} = Nu\sqrt{2}|\hat{\mathbb{P}}\cdot\hat{\bar{\lambda}}_{m}|$

Duality of 2-Point Amplitudes In general, all string decay rates (and mass shifts) are invariant under:

 $\lambda_n \to \lambda'_n = (-)^n \lambda_n^*, \quad \bar{\lambda}_n \to \bar{\lambda}'_n = (-)^n \bar{\lambda}_n^*, \quad \text{for} \quad n = 1, 2 \dots$ $\to \text{distinct string trajectories have the same decay rates and mass shifts!$

Summary

- Discussed construction of generic covariant coherent vertex operators and their classical analogues
- Analytically computed decay rates and powers associated to massless emission for special class of HES states in IR (on $\mathbb{R}^{D-1,1} \times T^{26-D}$)
- Found effective field theory that reproduces the leading terms of these decay rates and powers
- Discovered a duality setting decay rates of arbitrary strings equal to those of the dual strings

Future Prospects

- It is now possible to explore truly stringy signatures of cosmic superstrings
- Radiative backreaction is naturally included
- The possibility of massive emission is naturally incorporated
- Can be used to derive effective theories (e.g. for massive particle emission)
- The corresponding superstring version is under construction
- Applies at both small and macroscopic scales

High Frequencies

At high frequencies, ie large N, (when backreaction and massive radiation is neglected),

$$rac{dP_N}{d\Omega_{S^{D-2}}} \propto (Nuw)^{D-4-\delta} \Big(rac{uw}{N}\Big)^{2/3} g^{D-2-\delta}$$

generalising the D = 4, u = w = g = 1 result of Vachaspati and Vilenkin (1986).

String Decay Rates

From unitarity, $S^{\dagger}S = 1$, one can show that decay rates can be extracted (to leading order in g_s) from:

$$\Gamma = rac{1}{M} \operatorname{Im} \int d^D \mathbb{P} \, \mathcal{M}_1(\mathbb{P}).$$

The imaginary part is computed by searching for pinch singularities, where the \mathbb{P}^0 contour of integration is pinched between two poles as we vary k^0 in the complex plane, leading to:

$$egin{aligned} \Gamma &= rac{1}{M}\int d^D\mathbb{P}\;\sum_{\{m_j,\,k^\mu\}} \,|\,\ldots\,|^2\,\delta(\mathbb{P}^2+m_1^2)\deltaig((k-\mathbb{P})^2+m_2^2ig) \end{aligned}$$

with $m_1^2 = \left(\frac{N}{R}\right)^2 + \left(\frac{M'R}{2}\right)^2 + r + \bar{r} - 2, \ m_2^2 = \dots$

Two comments:

1. The continuous quantum numbers may (conveniently) be associated with the *classical* polarisation tensors of string embeddings,¹⁸

$$X(z,ar{z})=x-ip\ln|z|^2+\sum_{n
eq 0}rac{i}{n}ig(\lambda_n z^{-n}+ar{\lambda}_nar{z}^{-n}ig),$$

so that:

$$|\lambda,ar{\lambda}; p
angle = |\lambda_1,\lambda_2,\dots,ar{\lambda}_1,ar{\lambda}_2,\dots; p
angle \simeq V(\lambda,ar{\lambda})$$

2. Coherent states are *not* be eigenstates of annihilation operators in general,

$$\alpha_{n>0}|\lambda,\bar{\lambda};\ldots\rangle\neq\lambda_{n}|\lambda,\bar{\lambda};\ldots\rangle$$

¹⁸X spacetime embedding; z, \overline{z} worldsheet coordinates; \overline{p} momenta; $\lambda_n, \overline{\lambda}_n$ polarisation tensors; n harmonics