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Motivation

Highly excited superstrings (HES) form a benchmark of string
theory.

They are related to the UV finiteness, play key role in regions of
strong gravity (e.g. singularities1, early universe2, black holes3),
provide a source of non-locality (desirable4 e.g. in resolving
information paradox), and their properties may even lead to string
theory signatures, e.g. in context of COSMIC SUPERSTRINGS2).

1Horowitz, Steif (1997); . . .
2Sen (1998); Dvali & Vilenkin (2004); Copeland, Myers, Polchinski (2004); Hindmarsh (2011); DS,

Copeland, Saffin (2013); . . .
3Amati, Ciafaloni, Veneziano (1988); D’Appollonio, Di Vecchia, Russo Veneziano (2013);. . .
4Susskind (1995); Low, Polchinski, Susskind, . . . , (1997); Giddings (2007); Hartman, Maldacena

(2013);. . .



Cosmic String Zoo
Compactifications of string theory lead to many potential cosmic
string candidates (see e.g. Tye’s talk):5

- F-strings
- D-strings
- (p, q)-strings
- wrapped D-branes
- solitonic strings
- electric and magnetic flux tubes

...

5Dvali, Vilenkin (2004); Copeland, Myers, Polchinski (2004); Polchinski (2006); Banks, Seiberg
(2011)



Cosmic String Zoo
Compactifications of string theory lead to many potential cosmic
string candidates (see e.g. Tye’s talk):6

- F-strings ← here
- D-strings
- (p, q)-strings
- wrapped D-branes
- solitonic strings
- electric and magnetic flux tubes

...

6Sarangi, Tye (2002); Dvali, Vilenkin (2004); Copeland, Myers, Polchinski (2004); Polchinski (2006);
Banks, Seiberg (2011)



Effective Theory Approach
Traditionally one discusses CS in terms of effective theory (EFT).

Although these EFTs often follow from defining string theory
equations,7 the assumptions adopted to derive8 them also highlight
their weaknesses and limited applicability.

E.g., they do not capture truly stringy features, such as:

- couplings to infinite set of oscillator states (e.g. relevant for
cusp emission)

- inherently QM processes (e.g. string inter-commutations)
- break down at small scales (e.g. relevant for loop production)

7∑
h

∫
D(Xg)e iSPolyakov '

∫
D(GBΦ . . . )e iSeff

8Tseytlin (1991)



HES in String Theory

Going beyond EFTs . . .

In perturbative string theory one speaks in terms of vertex
operators, D-branes, and scattering amplitudes.

New efficient tools appropriate for HES now available, making
computations with HES tractable and efficient!9

⇒ Trick is to consider strings in a coherent state basis where
calculations become efficient and tractable10 ..

9Skliros, Hindmarsh (2011); Hindmarsh, Skliros (2011)
10Skliros, Copeland, Saffin (2013)



Coherent Vertex Operators
Definition of closed string coherent state:
(a) is specified by a (possibly infinite) set of continuous labels

(λ, λ̄), which may be associated to the left- and right-moving
modes;

(b) produces a resolution of unity,

1 =
∑∫
...

∫
dλd λ̄|λ, λ̄; . . . 〉〈λ, λ̄; . . . |,

so that the |λ, λ̄; . . . 〉 span the string Hilbert space. The dots
“ . . . ” denote possible additional quantum numbers;

(c) transforms correctly under all symmetries of the string theory



Coherent Vertex Operators
To construct covariant coherent vertex operators (CVO):
1. excite string ground state, Vground state, with massless states,

Vmassless, of momenta k = niq, with q2 = 0, ni ∈ Z+

2. sum over resulting excited states, V (r)
excited, ie sum over r

With appropriate combinatorial coefficients, cr , in sum, resulting
state V =

∑
r crV

(r)
excited satisfies above definition of CVOs



Classical-Quantum Map
Given any classical solution, there is a one-to-one map to the
corresponding quantum coherent vertex operators11

For example,12

X (z , z̄) =
i
n
(
λn z−n− λ∗n zn)+

i
m
(
λ̄m z̄−m− λ̄∗m z̄m),

corresponds to CVO,13

V (z ,z̄) = :C
∫ 2π

0
d s exp

( i
n

e insλn · Dn
z X e−inq·X (z)

)
× exp

( i
m

e−ims λ̄m · D̄m
z̄ X e−imq·X (z̄)

)
e ip·X (z,z̄) :

11Hindmarsh & Skliros PRL (2011)
12X spacetime embedding; z , z̄ worldsheet coordinates; p momenta; λn, λ̄n

polarisation tensors; n harmonics
13Skliros & Hindmarsh (2011)



HES Decay and Radiaton

We here compute decay rates and power associated to massless
emission for special class of HES states in IR (on RD−1,1 × T 26−D)



Some History First
A handful of references on decay rates of HES:

- Wilkinson, Turok, Mitchell (1990): leading Regge (bosonic)
states, R25,1, (numerical), Γd=4 ∝ L and Γd=26 ∝ L−1

- Dabholkar, Mandal, Ramadevi (1998): higher genus bound on
leading Regge Heterotic states, R3,1 × T 6, Γ . M−1

- Iengo, Russo (2002-6); Chialva, Iengo, Russo (2004-5): leading
Regge superstring states, RD−1,1 × T 10−D , (numerical),

Γ ∼ GDµ
2L5−D , µ = 1/2πα′

- Gutplerle & Krym (2006); leading Regge Heterotic states,
R8,1 × S1, (numerical)
...



Simplest Example
When only first harmonics are present,

V =

∫ 2π

0
d s exp

(
e is iζ · ∂zX e−iq·X

)
exp
(
e−is i ζ̄ · ∂z̄X e−iq·X

)
e ip·X

These correspond to leading Regge trajectories, with,

ζµ ≡ λi (δiµ − piqµ), L2 =
16π
µ

(
|ζ| − 1

)
, |ζ| ∈ R+

The classical analogue reads:

X (z , z̄) = i
(
λ z−1− λ∗ z1)+ i

(
λ̄ z̄−1− λ̄∗ z̄1),



Massless Radiation: Results
For massless radiation (i.e. m2

1 = 0) from above CVO vertices.
In the IR the result ressums:14

dP
dΩSD−2

∣∣∣
m2
1=0

=
∑
N

16πGDµ
2

(2π)D−4 ωD−4−δN2

[
J ′2N
(
A
)

+
(

(N/A)2 − 1
)
J2
N
(
A
)

+O
(
1/(α′M2)

)][
J ′2N
(
Ā
)

+
(

(N/Ā)2 − 1
)
J2
N
(
Ā
)

+O
(
1/(α′M2)

)]
where the frequency of emitted radiation,15

ω =
4πN

L
, with N = 1, 2, . . .

Taking δ = 1 yields a decay rate, δ = 0 yields a power.
14DS, Copeland and Saffin (PRL 2013)
15Here A = N

√
2|P̂ · λ̂1|, Ā = N

√
2|P̂ · ˆ̄λ1|, the Jn(z) are Bessel and M = µL, µ = 1/(2πα′)



Effective Description
The above power was shown16 to agree precisely with that
associated to the effective theory,

Seff =
1

16πGD

∫
dDx
√
−G e−2Φ

(
R(D) + 4(∇Φ)2 − 1

12
H2

(3) + . . .
)

− µ
∫

S2
∂Xµ ∧ ∂̄X ν

(
Gµν + Bµν

)
+ . . . ,

where Φ, Gµν and H(3) are the dilaton, spacetime metric and
3-form field strength, H = dB , respectively

(We plug classical solutions for X (from classical-CVO map) and
compute perturbations in G ,B and Φ)

16DS, Copeland and Saffin (PRL 2013)



Higher Harmonics
. . . the above correspondence acts as a guiding principle to write
down the general result for arbitrary harmonics (n,m):17

dP
dΩSD−2

∣∣∣
m2
1=0

=
∑
N

16πGDµ
2

(2π)D−4 ω
D−4−δ(Nuwg)2

[
J ′2Nw

(
A
)

+
(

(Nw/A)2 − 1
)
J2
Nw
(
A
)][

J ′2Nu
(
Ā
)

+
(

(Nu/Ā)2 − 1
)
J2
Nu
(
Ā
)]

with n ≡ gu, m ≡ gw , integers and u,w relatively prime.
(g can be interpreted as a winding number: M ∼ gR/α′, with
effective radius, R, determined by dynamics.)

17Here A = Nw
√
2|P̂ · λ̂n|, Ā = Nu

√
2|P̂ · ˆ̄λm|



Duality of 2-Point Amplitudes
In general, all string decay rates (and mass shifts) are invariant
under:

λn → λ′n = (−)nλ∗n, λ̄n → λ̄′n = (−)nλ̄∗n, for n = 1, 2 . . .

→ distinct string trajectories have the same decay rates and mass
shifts!



Summary

- Discussed construction of generic covariant coherent vertex
operators and their classical analogues

- Analytically computed decay rates and powers associated to
massless emission for special class of HES states in IR (on
RD−1,1 × T 26−D)

- Found effective field theory that reproduces the leading terms
of these decay rates and powers

- Discovered a duality setting decay rates of arbitrary strings
equal to those of the dual strings



Future Prospects

- It is now possible to explore truly stringy signatures of cosmic
superstrings

- Radiative backreaction is naturally included
- The possibility of massive emission is naturally incorporated
- Can be used to derive effective theories (e.g. for massive
particle emission)

- The corresponding superstring version is under construction
- Applies at both small and macroscopic scales

-
...



High Frequencies

At high frequencies, ie large N, (when backreaction and massive
radiation is neglected),

dPN

dΩSD−2
∝ (Nuw)D−4−δ

(uw
N

)2/3
gD−2−δ,

generalising the D = 4, u = w = g = 1 result of Vachaspati and
Vilenkin (1986).



String Decay Rates
From unitarity, S†S = 1, one can show that decay rates can be
extracted (to leading order in gs) from:

Γ =
1
M

Im
∫

d DPM1(P).

The imaginary part is computed by searching for pinch singularities,
where the P0 contour of integration is pinched between two poles
as we vary k0 in the complex plane, leading to:

Γ =
1
M

∫
d DP

∑
{mj , kµ}

| . . . |2 δ(P2 + m2
1)δ
(
(k − P)2 + m2

2
)

with m2
1 =

(N
R

)2
+
(M′R

2

)2
+ r + r̄ − 2, m2

2 = . . .



Two comments:

1. The continuous quantum numbers may (conveniently) be
associated with the classical polarisation tensors of string
embeddings,18

X (z , z̄) = x − ip ln |z |2 +
∑
n 6=0

i
n
(
λnz−n + λ̄nz̄−n),

so that:

|λ, λ̄; p〉 = |λ1, λ2, . . . , λ̄1, λ̄2, . . . ; p〉 ' V (λ, λ̄)

2. Coherent states are not be eigenstates of annihilation
operators in general,

αn>0|λ, λ̄; . . . 〉 6= λn|λ, λ̄; . . . 〉

18X spacetime embedding; z , z̄ worldsheet coordinates; p momenta; λn, λ̄n

polarisation tensors; n harmonics


