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Outline

Old stuff… trying to convince people…

current-carrying strings

A controversy… solved

type II semi-local strings

B. Hartmann and PP, Phys. Rev. D86, 103516 (2012) [1204.1270]
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+ SUSY breaking and R-parity
Hybrid Inflation ...

Many fields      many possible couplings=)
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How Witten current-carrying condensate works (scalar case):

L = �|D�|2 � V (�)� |D⌃|2 � V (�,⌃)

w ⌘ �ab@
a

 @
b

 

⌃ (x↵) = �(r)ei(!t�kz) ⌘ �
�

x?�
e

i (⇠

a
)

!2

(⌘, k)

s/m3

n/m3 ⌧ 1

2

3

�+H�1

˙

�

1 + w
+ �

1

@ � iqC

@ � ieB

�1

4

F 2

C

� 1

4

F 2

B

L = �|D�|2 � V (�)� |D⌃|2 � V (�,⌃)

w ⌘ �ab@
a

 @
b

 

⌃ (x↵) = �(r)ei(!t�kz) ⌘ �
�

x?�
e

i (⇠

a
)

!2

(⌘, k)

1

@ � iqC

@ � ieB

�1

4

F 2

C

� 1

4

F 2

B

L = �|D�|2 � V (�)� |D⌃|2 � V (�,⌃)

w ⌘ �ab@
a

 @
b

 

⌃ (x↵) = �(r)ei(!t�kz) ⌘ �
�

x?�
e

i (⇠

a
)

!2

(⌘, k)

1

@ � iqC

@ � ieB

�1

4

F 2

C

� 1

4

F 2

B

L = �|D�|2 � V (�)� |D⌃|2 � V (�,⌃)

w ⌘ �ab@
a

 @
b

 

⌃ (x↵) = �(r)ei(!t�kz) ⌘ �
�

x?�
e

i (⇠

a
)

!2

(⌘, k)

1

�
�

4

�

|�|2 � ⌘2
�

2

@ � iqC

@ � ieB

�1

4

F 2

C

� 1

4

F 2

B

L = �|D�|2 � V (�)� |D⌃|2 � V (�,⌃)

w ⌘ �ab@
a

 @
b

 

⌃ (x↵) = �(r)ei(!t�kz) ⌘ �
�

x?�
e

i (⇠

a
)

1

� = ⌘X(r)ein✓ X x y

m2

�

2

+

�
�

4

|⌃|4 + f
�

|�|2 � ⌘2
�

⌃

2

�
�

4

�

|�|2 � ⌘2
�

2

@ � iqC

@ � ieB

�1

4

F 2

C

� 1

4

F 2

B

L = �|D�|2 � V (�)� |D⌃|2 � V (�,⌃)

1

Field structure� = ⌘X(r)ein✓ X x y

m2

�

2

+

�
�

4

|⌃|4 + f
�

|�|2 � ⌘2
�

⌃

2

�
�

4

�

|�|2 � ⌘2
�

2

@ � iqC

@ � ieB

�1

4

F 2

C

� 1

4

F 2

B

L = �|D�|2 � V (�)� |D⌃|2 � V (�,⌃)

1

� = ⌘X(r)ein✓ X x y

m2

�

2

+

�
�

4

|⌃|4 + f
�

|�|2 � ⌘2
�

⌃

2

�
�

4

�

|�|2 � ⌘2
�

2

@ � iqC

@ � ieB

�1

4

F 2

C

� 1

4

F 2

B

L = �|D�|2 � V (�)� |D⌃|2 � V (�,⌃)

1

� = ⌘X(r)ein✓ X x y

m2

�

2

+

�
�

4

|⌃|4 + f
�

|�|2 � ⌘2
�

⌃

2

�
�

4

�

|�|2 � ⌘2
�

2

@ � iqC

@ � ieB

�1

4

F 2

C

� 1

4

F 2

B

L = �|D�|2 � V (�)� |D⌃|2 � V (�,⌃)

1

⌃ = �(x, y)ei!t

[��+ V(r)] � = !2�

Q = n+ qC
✓

' = ⌘X(r) X x y

m2

�

2

|⌃|2 + �
�

4

|⌃|4 + f
�

|�|2 � ⌘2
�

|⌃|2

�
�

4

�

|�|2 � ⌘2
�

2

@ � iqC

@ � ieB

�1

4

F 2

C

� 1

4

F 2

B

L = �|D�|2 � V (�)� |D⌃|2 � V (�,⌃)

2



Phoenix - February 5, 2014
!6

� = ⌘X(r)ein✓ X x y

m2

�

2

+

�
�

4

|⌃|4 + f
�

|�|2 � ⌘2
�

⌃

2

�
�

4

�

|�|2 � ⌘2
�

2

@ � iqC

@ � ieB

�1

4

F 2

C

� 1

4

F 2

B

L = �|D�|2 � V (�)� |D⌃|2 � V (�,⌃)

1

Field structure

Q = n+ qC
✓

� = ⌘X(r)ein✓ X x y

m2

�

2

+

�
�

4

|⌃|4 + f
�

|�|2 � ⌘2
�

⌃

2

�
�

4

�

|�|2 � ⌘2
�

2

@ � iqC

@ � ieB

�1

4

F 2

C

� 1

4

F 2

B

1

Background



Phoenix - February 5, 2014
!7

Perturbations ⌃ = �(x, y)ei!t
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Equation of state (B. Carter)
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Possible consequences
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Vortons?

Cusps… constraints 
currents can be electromagnetic: new effects (many already ruled out) 
                     => gravitational pull, not only Kaiser-Stebbins 
Equation of state completely different: network dynamics?  
(most people say currents will not change the overall dynamics… argument?)
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Type II semi-local vortices?

2

U(1) condensate in a local U(1) vortex. Here we still
assume the vortex to be produced by a gauged U(1) sym-
metry breaking, but instead of adding extra symmetries,
we embed this local U(1) into an otherwise global SU(2).
Non-current carrying strings in this model have been in-
vestigated in [11–14], while the current-carrying case has
been discussed in [15, 16]. This is merely the limit of the
usual would-be semi-local strings found in the standard
electroweak model; except that the measured parameters
of this model preclude their actual stability. In fact, the
stability of non-current carrying semi-local strings does
not follow from the topology of the vacuum manifold (as
it does for the U(1) case), but from dynamical arguments.

The ratio between the gauge and Higgs boson mass
governs the stability of semi-local strings: for Higgs bo-
son mass larger (smaller) than the gauge boson mass
semi-local strings are unstable (stable) and in the BPS
limit a degenerate one-parameter family of stable solu-
tions exists [12]. The parameter corresponds roughly to
the width of the strings and as such semi-local strings of
arbitrary width have the same energy in the BPS limit.
Whenever this zero mode gets excited it leads to the
growth of the string core [17]. As such these non-current
carrying semi-local strings have been studied in the con-
text of cosmological application regarding the formation
and evolution of string networks [18–21] as well as im-
plications for the CMB [22]. The stability of the current-
carrying counterparts has been discussed in [23] using
linear perturbation theory; there it was also found that
these embedded type II vortices have a single unstable
mode, and so it has been suggested that the current-
carrying ones, being less energetic, could be stable. We
show that this is not the case because some other insta-
bility develops.

In a sense, the category of this model is more natu-
ral than the Witten-kind of models because one expects a
large GUT group to be partially broken to yield the low
energy particle physics currently tested at the LHC, so
the strings, if present, once formed, are expected to be
embedded in a larger structure. It is obviously mostly
a parameter dependent question to know whether the
strings here described will form rather that the Witten
kind of strings. Finally, such a model permits to embed
a cosmic string in a non abelian framework in a tractable
way, contrary to what happens in the case of a pure non
abelian current-carrying situation [24, 25].

As already mentioned above, if the ratio between the
Higgs and gauge boson masses is large, the correspond-
ing type II vortices are unstable. In Ref. [26] and [27], it
was shown that a current could build along such vortices,
and that the resulting current-carrying state was less en-
ergetic than the structureless one. A stability analysis
[23] then showed that even though long wavelength per-
turbations tend to grow exponentially, there was a limit
below which the current-carrying string state could be
stable; this could imply important cosmological conse-

quences whenever small loops form. The purpose of the
current article is to close this window of stability by per-
forming a global analysis showing the current-carrying
configurations will also develop a short wavelength in-
stability, the so-called longitudinal instability introduced
by Carter [28–30].

The paper is organized as follows: in the following
section II, we set up the actual model and discuss the
stringlike solutions that can be expected. We then move
on, in Sec. III to evaluating the currents that could con-
dense in a string core, summarizing a stability analysis
first discussed in [12]. These currents are examined thor-
oughly in Sec. III B and it is shown that the lightlike cur-
rent limit is defined as the endpoint of the state parame-
ter space in this case, with the phase frequency threshold
being at the null point. Finally, Sec. IV shows that the
corresponding equation of state leads to the longitudinal
loop instabilities: right after a condensate has formed, it
should evolve towards the chiral limit [31], thereby de-
stroying many would-be vortons [32] through emission
of high energy particles [33, 34]. We conclude that type
II vortices cannot form at all in such models.

II. PARTLY GAUGED SU(2) STRING MODEL

The simplest embedded current-carrying string model
is provided by the partly ungauged version of the elec-
troweak theory in which the SU(2) coupling constant is
made to vanish, while the equivalent to electromagnetism
U(1) remains gauged. In practice, this amounts to start-
ing with the following Lagrangian

L = �gµ⌅(Dµ�)† · D⌅� �
1
4

Fµ⌅Fµ⌅ � V(�), (1)
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assume the vortex to be produced by a gauged U(1) sym-
metry breaking, but instead of adding extra symmetries,
we embed this local U(1) into an otherwise global SU(2).
Non-current carrying strings in this model have been in-
vestigated in [11–14], while the current-carrying case has
been discussed in [15, 16]. This is merely the limit of the
usual would-be semi-local strings found in the standard
electroweak model; except that the measured parameters
of this model preclude their actual stability. In fact, the
stability of non-current carrying semi-local strings does
not follow from the topology of the vacuum manifold (as
it does for the U(1) case), but from dynamical arguments.

The ratio between the gauge and Higgs boson masses
governs the stability of semi-local strings: for Higgs bo-
son mass larger (smaller) than the gauge boson mass
semi-local strings are unstable (stable) and in the BPS
limit a degenerate one-parameter family of stable solu-
tions exists [12]. The parameter corresponds roughly to
the width of the strings and as such semi-local strings of
arbitrary width have the same energy in the BPS limit.
Whenever this zero mode gets excited it leads to the
growth of the string core [17]. As such these non-current
carrying semi-local strings have been studied in the con-
text of cosmological applications regarding the forma-
tion and evolution of string networks [18–21] as well
as implications for the CMB [22]. The stability of the
current-carrying counterparts has been discussed in [23]
using linear perturbation theory; there it was also found
that these embedded type II vortices have a single unsta-
ble mode, and so it has been suggested that the current-
carrying ones, being less energetic, could be stable. We
show that this is not the case because some other insta-
bility develops.

In a sense, the category of this model is more natu-
ral than the Witten-kind of models because one expects a
large GUT group to be partially broken to yield the low
energy particle physics currently tested at the LHC, so
the strings, if present, once formed, are expected to be
embedded in a larger structure. It is obviously mostly
a parameter dependent question to know whether the
strings here described will form rather than the Witten
kind of strings. Finally, such a model permits to embed
a cosmic string in a non abelian framework in a tractable
way, contrary to what happens in the case of a pure non
abelian current-carrying situation [24, 25].

As already mentioned above, if the ratio between the
Higgs and gauge boson masses is large, the correspond-
ing type II vortices are unstable. In Ref. [15] and [16], it
was shown that a current could build along such vortices,
and that the resulting current-carrying state was less en-
ergetic than the structureless one. A stability analysis
[23] then showed that even though long wavelength per-
turbations tend to grow exponentially, there was a limit
below which the current-carrying string state could be
stable; this could imply important cosmological conse-
quences whenever small loops form. The purpose of the

current article is to close this window of stability by per-
forming a global analysis showing the current-carrying
configurations will also develop a short wavelength in-
stability, the so-called longitudinal instability introduced
by Carter [26–28].

The paper is organized as follows: in the following
section II, we set up the actual model and discuss the
stringlike solutions that can be expected. We then move
on, in Sec. III to evaluating the currents that could con-
dense in a string core, summarizing a stability analysis
first discussed in [12]. These currents are examined thor-
oughly in Sec. III B and it is shown that the lightlike cur-
rent limit is defined as the endpoint of the state parame-
ter space in this case, with the phase frequency threshold
being at the null point. Finally, Sec. IV shows that the
corresponding equation of state leads to the longitudinal
loop instabilities: right after a condensate has formed, it
should evolve towards the chiral limit [29], thereby de-
stroying many would-be vortons [30] through emission
of high energy particles [31, 32]. We conclude that type
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there remains a local U(1) gauge to be fixed through
the phase of �0; if it takes the form of a non vanish-
ing winding, i.e. if �0 / ein✓ with index n 2 Z , 0
and ✓ a local coordinate angle, then �0 ! 0 defines a
string around which the phase winds. One can then lo-
cally set the string to be aligned along a z�axis around
which one defines the cylindrical coordinates r and ✓, and
the non vanishing component of the Higgs field becomes
�0 = '(r)ein✓, where lim

r!1 '(r) = ⌘ and '(0) = 0.
The question then arises as to the actual stability of

the above configuration. An analysis similar to that in
[7] is carried out below showing that one does indeed
expect a current of the kind we discussed in the following
sections.

From the Lagrangian (1), one obtains the general
equations of motion for the gauge field Aµ as
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with the hermitian conjugate equation applying for �†.
These give, for the background configuration (3) with the
potential (2),
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after setting Q = n � eA✓ to account for the winding
number. We now assume – see the following sections –
that we have (numerical) solutions for the functions '(r)
and Q(r).

Because the Higgs doublet is coupled with itself, and
even though finite energy solutions of Eqs. (6) and (7)
exist, one needs verify that these are stable. Following
Witten [7], we set an arbitrary perturbation � = �0+��
with
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Plugging Eq. (11) into (5) and keeping only first order
terms, one gets the Schrödinger-like equation

��2� +V(r)� = !2�, (9)

where �2 = @2
x

+ @2
y

= @2
r

+ r

�1@
r

+ r

�2@2
✓ is the two-

dimensional laplacian and the e↵ective potentialV reads

V(r) =
[n � Q(r)]2

r

2 + �
h
'2(r) � ⌘2

i
. (10)
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ure that there could be bound states provided � is large
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the parameter � = �/(2e

2) as a function of the dimensionless
distance to the string core ⇢ =
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Since lim
r!0V(r) = ��⌘2 is negative and V ⇠ n

2/r2

asymptotically, the potential satisfies the usual quantum
mechanical conditions for having a bound state: a range
of values for the parameter � can be found for which
there exist solutions of Eq. (9) with !2 < 0, and hence
an instability of the background solution (3) should de-
velop. With the non linear terms taken fully into account,
the instability translates into a condensate that can carry
a current. Comparison with Ref. [12] shows that for
� > 1

2 , i.e. � > e

2, one expects a condensate to form: ac-
cording to the usual classification, this means that type I
vortices are absolutely stable (no condensate) while type
II vortices spontaneously form a current-carrying state.
Note also that since type II vortices are energetically fa-
vored to occur with unit winding number, we shall for
now on restrict attention to the case n = 1. The question
now is whether or not these current-carrying solutions
can lead to the stable enough configurations (for cosmo-
logical purposes) discussed in [23].

It should be remarked at this stage that the mere ex-
istence of an instability does not guarantee that it has
an endpoint which one then identifies with the current-
carrying state. The numerical solutions obtained below
show that it does, and because the field equations stem
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3

there remains a local U(1) gauge to be fixed through
the phase of ⇥0; if it takes the form of a non vanish-
ing winding, i.e. if ⇥0 ⌃ ein⌅ with index n � , 0
and ⌅ a local coordinate angle, then ⇥0 ⌅ 0 defines a
string around which the phase winds. One can then lo-
cally set the string to be aligned along a z�axis around
which one defines the cylindrical coordinates r and ⌅, and
the non vanishing component of the Higgs field becomes
⇥0 = ⌦(r)ein⌅, where limr⌅⌥ ⌦(r) = ⇤ and ⌦(0) = 0.

The question then arises as to the actual stability of
the above configuration. An analysis similar to that in
[7] is carried out below showing that one does indeed
expect a current of the kind we discussed in the following
sections.

From the Lagrangian (1), one obtains the general
equations of motion for the gauge field Aµ as

1 �g
↵⌃
� �gF⌃µ

⇥
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These give, for the background configuration (3) with the
potential (2),
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and
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dr
= 2e2⌦2Q, (7)

after setting Q = n � eA⌅ to account for the winding
number. We now assume – see the following sections –
that we have (numerical) solutions for the functions ⌦(r)
and Q(r).

Because the Higgs doublet is coupled with itself, and
even though finite energy solutions of Eqs. (6) and (7)
exist, one needs verify that these are stable. Following
Witten [7], we set an arbitrary perturbation � = �0+⇥�
with

⇥� =
⇤

0
�ei t

⌅
, (8)

where � = �(r) depends on the radial coordinate only.
Plugging Eq. (11) into (5) and keeping only first order
terms, one gets the Schrödinger-like equation

��2� +V(r)� =  2�, (9)

where �2 = ↵2
x + ↵

2
y = ↵2

r + r�1↵r + r�2↵2
⌅ is the two-

dimensional laplacian and the e⇤ective potentialV reads

V(r) =
[n � Q(r)]2

r2 + ⇧
⌥
⌦2(r) � ⇤2

�
. (10)

This potential is shown on Fig. 1 for di⇤erent values
of the parameter � ⇥ ⇧/(2e2). One expects from the fig-
ure that there could be bound states provided � is large
enough.

FIG. 1: The potential (10), rescaled so as to be dimensionless,
appearing in the Schrödinger equation (9) for various values of
the parameter � = ⇧/(2e2) as a function of the dimensionless
distance to the string core ⌥ =

 
2e⇤r (see Sec. IV C for details

on the numerics).

Since limr⌅0V(r) = �⇧⇤2 is negative and V ⇤ n2/r2

asymptotically, the potential satisfies the usual QM con-
ditions for having a bound state: a range of values for the
parameter � can be found for which there exist solutions
of Eq. (9) with  2 < 0, and hence an instability of the
background solution (3) should develop. With the non
linear terms taken fully into account, the instability trans-
lates into a condensate that can carry a current. Compar-
ison with Ref. [12] shows that for � > 1

2 , i.e. ⇧ > e2,
one expects a condensate to form: according to the usual
classification, this means that type I vortices are abso-
lutely stable (no condensate) while type II vortices spon-
taneously form a current-carrying state. Note also that
since type II vortices are energetically favored to occur
with unit winding number, we shall for now on restrict
attention to the case n = 1. The question now is whether
or not these current-carrying solutions can lead to the sta-
ble enough configurations (for cosmological purposes)
discussed in [23].

It should be remarked at this stage that the mere ex-
istence of an instability does not guarantee that it has
an endpoint which one then identifies with the current-
carrying state. The numerical solutions obtained below
show that it does, and because the field equations stem
from minimizing the energy per unit length to be mini-

Perturbation

3

there remains a local U(1) gauge to be fixed through
the phase of ⇥0; if it takes the form of a non vanish-
ing winding, i.e. if ⇥0 ⌃ ein⌅ with index n � , 0
and ⌅ a local coordinate angle, then ⇥0 ⌅ 0 defines a
string around which the phase winds. One can then lo-
cally set the string to be aligned along a z�axis around
which one defines the cylindrical coordinates r and ⌅, and
the non vanishing component of the Higgs field becomes
⇥0 = ⌦(r)ein⌅, where limr⌅⌥ ⌦(r) = ⇤ and ⌦(0) = 0.

The question then arises as to the actual stability of
the above configuration. An analysis similar to that in
[7] is carried out below showing that one does indeed
expect a current of the kind we discussed in the following
sections.

From the Lagrangian (1), one obtains the general
equations of motion for the gauge field Aµ as

1 �g
↵⌃
� �gF⌃µ

⇥
= 2e2�† ·�Aµ + ie�

⇧
↵ µ�, (4)

and for the Higgs scalar

1 �g
↵µ
� �ggµ⌃D⌃�

⇥
= ieA⌃D⌃� +�

dV(�)
d(�† ·�)

, (5)

with the hermitian conjugate equation applying for �†.
These give, for the background configuration (3) with the
potential (2),

d2⌦

dr2 +
1
r

d⌦
dr
=

⇧
Q2

r2 + ⇧
�
⌦2 � ⇤2

⇥⌃
⌦, (6)

and

d2Q
dr2 �

1
r

dQ
dr
= 2e2⌦2Q, (7)

after setting Q = n � eA⌅ to account for the winding
number. We now assume – see the following sections –
that we have (numerical) solutions for the functions ⌦(r)
and Q(r).

Because the Higgs doublet is coupled with itself, and
even though finite energy solutions of Eqs. (6) and (7)
exist, one needs verify that these are stable. Following
Witten [7], we set an arbitrary perturbation � = �0+⇥�
with

⇥� =
⇤

0
�ei t

⌅
, (8)

where � = �(r) depends on the radial coordinate only.
Plugging Eq. (11) into (5) and keeping only first order
terms, one gets the Schrödinger-like equation

��2� +V(r)� =  2�, (9)

where �2 = ↵2
x + ↵

2
y = ↵2

r + r�1↵r + r�2↵2
⌅ is the two-

dimensional laplacian and the e⇤ective potentialV reads

V(r) =
[n � Q(r)]2

r2 + ⇧
⌥
⌦2(r) � ⇤2

�
. (10)

This potential is shown on Fig. 1 for di⇤erent values
of the parameter � ⇥ ⇧/(2e2). One expects from the fig-
ure that there could be bound states provided � is large
enough.

FIG. 1: The potential (10), rescaled so as to be dimensionless,
appearing in the Schrödinger equation (9) for various values of
the parameter � = ⇧/(2e2) as a function of the dimensionless
distance to the string core ⌥ =

 
2e⇤r (see Sec. IV C for details

on the numerics).

Since limr⌅0V(r) = �⇧⇤2 is negative and V ⇤ n2/r2

asymptotically, the potential satisfies the usual QM con-
ditions for having a bound state: a range of values for the
parameter � can be found for which there exist solutions
of Eq. (9) with  2 < 0, and hence an instability of the
background solution (3) should develop. With the non
linear terms taken fully into account, the instability trans-
lates into a condensate that can carry a current. Compar-
ison with Ref. [12] shows that for � > 1

2 , i.e. ⇧ > e2,
one expects a condensate to form: according to the usual
classification, this means that type I vortices are abso-
lutely stable (no condensate) while type II vortices spon-
taneously form a current-carrying state. Note also that
since type II vortices are energetically favored to occur
with unit winding number, we shall for now on restrict
attention to the case n = 1. The question now is whether
or not these current-carrying solutions can lead to the sta-
ble enough configurations (for cosmological purposes)
discussed in [23].

It should be remarked at this stage that the mere ex-
istence of an instability does not guarantee that it has
an endpoint which one then identifies with the current-
carrying state. The numerical solutions obtained below
show that it does, and because the field equations stem
from minimizing the energy per unit length to be mini-

Schrödinger like equation

Unstable modes => condensates à la Witten...

4

mized, they provide more stable configurations satisfy-
ing the boundary conditions. As we shall see, these solu-
tions will turn out to initiate another instability.

III. THE CURRENT-CARRIER CONDENSATE

For now on, we follow [23] and assume a condensate
did form and we write the Higgs doublet as

� =
⇧
 (r)ein⇤+i⌥(z,t)

⌃(r)eim⇤+i⇧(z,t)

⌃
, (11)

where n � is the winding number of the string, m �
leaves the possibility for the perturbation to wind as well,
and the phases ⌥ and ⇧ only depend on the internal string
coordinates. This field can then source A⇤, Az and At,
all being functions of the radius r only in order for the
worldsheet to be localized. Note that the form (11) as-
sumes no modes are present in the transverse direction,
i.e. the phases ⌥ and ⇧ do not depend on r, so we do con-
sider neither ingoing nor outgoing waves: the field con-
figuration we are investigating is at equilibrium, hence
may only have excitations along the worldsheet. We shall
also occasionally use a latin index to denote worldsheet
coordinates {z, t} collectively.

A. State parameters

With the ansatz (11), the field equations now read

A⌃⌃a +
1
r

A⌃a + 2e
⌥
(⌦a⌥ � eAa) 2 + (⌦a⇧ � eAa)⌃2

�
= 0,

(12)
for the internal gauge fields,

Q⌃⌃ � 1
r

Q⌃ = 2e2
⌥
Q 2 + (Q + m � n)⌃2

�
, (13)

with the same convention as before that Q = n � eA⇤,

 ⌃⌃ +
1
r
 ⌃ =

⇧
P2
⌥ +

Q2

r2 + ⌅
�
 2 + ⌃2 � ⇥2

⇥⌃
 , (14)

with P2
⌥ = (⌦z⌥ � eAz)2 � (⌦t⌥ � eAt)2,

⌃⌃⌃ +
1
r
⌃⌃ =

⇧
P2
⇧ +

(Q + m � n)2

r2 + ⌅
�
 2 + ⌃2 � ⇥2

⇥⌃
⌃,

(15)
where P2

⇧ is defined in a similar fashion as P⌥, namely
P2
⇧ = (⌦z⇧ � eAz)2 � (⌦t⇧ � eAt)2. Finally, the phases

represent massless modes propagating along the string,
as is clear from their equations of motion

(⌦2
t � ⌦2

z )⌥ = �ab⌦a⌦b⌥ = 0 = �ab⌦a⌦b⇧. (16)

In Eqs. (12) to (16), we have set a prime to denote a
derivative with respect to the radial distance r.

One now needs to look at the boundary conditions to
restrict attention to the physically meaningful cases. In
particular, noting that limr⇤0 Q(r) = n and assuming P2

⇧
to be regular at the string core location, Eq. (15) implies
the following: setting ⌃ ⌅ ⌃0 + ⌃⌃0r + 1

2⌃
⌃⌃
0 r2 + · · · , the

expansion

⌃⌃⌃0

⇤
2 � m2

2

⌅
+
⌃⌃0
r

�
1 � m2

⇥
+

m2⌃0

r2 P2
⇧(0)⌃0 + O (r) = 0

should hold. In order for the r�2 term to be regular, one
must impose either m = 0 or demand that ⌃0 = 0. In
the latter case, assuming m , 0, one finds that m2 = 1
and m2 = 4 simultaneously, which is self-contradictory.
Hence, we must set m = 0 and limr⇤0 ⌃⌃(r) = 0. More-
over, asymptotically, i.e. when Q ⇤ 0, ⌃ ⇤ 0 and
 ⇤ ⇥, Eq. (12) becomes

A⌃⌃a +
1
r

A⌃a + 2e⇥2(⌦a⌥ � eAa) = 0, (17)

the solution of which can only be made to vanish – i.e. we
demand limr⇤⌥ Aa(r) = 0 in order for the total energy of
the configuration to be finite – only provided ⌦a⌥ = 0. As
⌥ must now be a constant, it can, without lacking gener-
ality, be set to zero by means of a global SU(2) gauge
transformation (which can also remove any constant part
that would be present in ⇧ as well). The general solution
of (16) then reads

⇧ = ⇧�(z � t) + ⇧+(z + t) + kz � �t, (18)

where ⇧± represent the left and right massless modes
moving along the string and the last term represents a co-
herent mode, that can, in the usual case, be built as a su-
perposition of left and right movers. If a string segment is
considered, the left and right moving modes are respon-
sible for the leaking out of the current; again, following
[23], we shall in what follows consider a z�independent
string (approximating a closed loop when setting peri-
odic boundary conditions), assuming it can somehow be
formed in the first place and thus neglect these modes;
we shall accordingly set ⇧± ⇤ 0 in what follows.

Because of Eq. (18), the last term of Eq. (17) is a con-
stant. This implies that the two functions Pa ⇥ eAa � ⌦a⇧
satisfy the same linear equation and hence are merely
proportional to one another for all values of r. One
then has Pz ⇧ Pt, the proportionality constant being
found by taking the asymptotic limit of this relation for
which we want the gauge field Aa to vanish. This yields
Pz = �kPt/�, and thus Az = �kAt/�. We are now in a
position to define the relevant degree of freedom as
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k2
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with w the state parameter, and the function P is di-
mensionless. The fields Az and At are then related to P
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L( ,⌥,Q, P) = � ⌅2 �⌥⌅2 � Q2 2

r2 � (Q � n)2⌥2

r2 �w
�
e2 2P2 + (b + eP)2⌥2

 
� 1

2

⇤
wP⌅2 +

Q⌅2

e2r2

⌅
� ⌅

2

�
 2 + ⌥2 � ⇤2

⇥2
.

(36)

We assume the other components, i.e. in the transverse
direction, to vanish once integrated along the radial co-
ordinates for the on-shell solution [37]. Following [38],
we write

Tab =

⇤
A + B C
C �A + B

⌅
, (37)

where A = �L( ,⌥,Q, P; w ⇤ 0), i.e. that part of L of
Eq. (36) without the variations along the vortex, and

B =  2e2(A2
z + A2

t ) + ⌥2
�
(k � eAz)2 + (� + eAt)2

 

+
1
2

(A⌅2z + A⌅2t ), (38)

and the non diagonal component reads

C = 2 2e2AzAt � 2⌥2(k � eAz)(� + eAt) + A⌅zA
⌅
t . (39)

Diagonalization of Tab with respect to ⇤ab = diag (�1, 1)
the two-dimensional Minkowski metric yields the eigen-
values E±. Those are

E± ⇥ A±
⌦
B2 � C2

= A± w
⇧
1
2

P⌅2 + e2P2 2 + (b + eP)2 ⌥2
⌃
, (40)

from which one derives the energy per unit length U and
tension T by integration over the transverse degrees of
freedom, namely

U = 2⇧
⌥

E+(r) r dr and T = 2⇧
⌥

E�(r) r dr. (41)

Note at this point that since the quantity appearing in
the diagonalizing solution Eq. (40) is a perfect square,
the integration and diagonalization procedures commute,
just as in the case of the current for which (29) could be
straightforwardly derived, so the resulting macroscopic
quantities are really defined in an unambiguous way.

In order to evaluate the actual behavior of the equa-
tion of state relating the energy per unit length and the
tension, and in particular the stability of the resulting
current-carrying string, we now discuss the numerical so-
lutions.

C. Numerics

Solving numerically the system of equations (13),
(14), (19) and (20), requires that we cancel out the di-
mensions of the relevant quantities. Setting ⌃ =

⇧
2e⇤r

FIG. 2: Rescaled fields around the vortex: X(⌃) – full line –
and Y(⌃) – dashed – are the Higgs field components in units
of the Higgs VEV ⇤, while the vector field flux Q(⌃) – dotted
– renders the vortex local and P(⌃) – dot-dashed – condenses
in such a way as to support the current otherwise induced by
condensation of Y . This figure is obtained for parameter values
� = 1, ⇥ = 3 and w̃ = 0.1⇥/�2.

the radius in units of the gauge vector mass, and rescaling
the fields and state parameter through

 = ⇤X(⌃), ⌥ = ⇤Y(⌃) and w = 2⇤2w̃,

we obtain the dimensionless equations of motion in the
form

Ẍ +
1
⌃

Ẋ =
⇧
w̃P2 +

Q2

⌃2 + ⇥
�
X2 + Y2 � 1

⇥⌃
X, (42)

Q̈ � 1
⌃

Q̇ = QX2 + (Q � n)Y2, (43)

Ÿ +
1
⌃

Ẏ =
⇧
w̃(� + P)2 +

(Q � n)2

⌃2 + ⇥
�
X2 + Y2 � 1

⇥⌃
Y,

(44)

P̈ +
1
⌃

Ṗ = P
�
X2 + Y2

⇥
+ �Y2, (45)

where a dot denotes di�erentiation with respect to the
rescaled radius ⌃ and the constants are defined by � ⇥
b/e and ⇥ ⇥ ⌅/(2e2).
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FIG. 3: Energy per unit length U (full lines) and tension T
(dashed lines) of the semi-local string in unit of the squared
Higgs vev ⇤2 for � = 1 as on Fig. 2, and di�erent values of ⇥ as
indicated on the curves. This shows explicitly the absence of a
phase frequency threshold at w̃ = 0, i.e. the null current limit
is perfectly regular. The functions end abruptly for a maximum
value of w̃, as indicated in Eq. (47) after which the conden-
sate identically vanished. It is also seen that U and T vary in
the same way with w for all values of w, so that dT/dU > 0,
and hence the longitudinal perturbation velocity c2

L
is always

negative, signaling an unstable behavior of the string seen as
a macroscopic object; the relevant string evolution presumably
leads to a chiral behavior independently of the initial value of
the cosmological w distribution at the string network formation
time.

A point worth discussing in relation with these equa-
tions concerns the evolution of the condensate as the
state parameter increases. Expanding the field functions
around the string core as X ⌥ ⌃m + · · · , Y ⇧ Y0 +

1
2 Ẍ0⌃2 +

· · · , Q ⇧ n+ 1
2 Q̈0⌃2+· · · and P ⇧ P0+

1
2 P̈0⌃2+· · · , where

we have taken into account the regular boundary condi-
tions, the zeroth order expansion of Eqs. (42) to (45), one
gets that

P̈0 =
Y2

0

2
(� + P0) , (46)

implying that �� ⇤ P0 ⇤ 0: if P0 > 0, then (46) im-
plies that P̈0 > 0, and hence P should be a growing and
positive function of ⌃, which is inconsistent with the re-
quirement that lim⌃⌃� P = 0 (we assume, following the
figures, that the functions are monotonic). If P0 < ��,
then P̈0 < 0, the same argument applies with a negative
and decreasing function.

Eq. (42) tells us that m = n, as usual, while Eq. (43)
is trivially satisfied at the lowest order with the given ex-

FIG. 4: Variation of the internal current eI/⇤ as a function of
the rescaled state parameter w̃ for � = 1 and various values of
⇥ (same as on Fig. 3).

pansion. However, Eq. (44) translates into

Ÿ0 =
Y0

2

⇤
w̃ (� + P0)2 + ⇥

�
Y2

0 � 1
⇥⌅
,

so that, demanding Ÿ0Y0 < 0 for the reasons just dis-
cussed for P, one finds that

Y2
0 ⇤ 1 � w̃

⇥
(� + P0)2 , (47)

indicating that for large values of w̃, assuming P0 to de-
pend only mildly on w̃ (indeed, P0 ⌃ 0 in this limit),
the available range for Y0 abruptly shrinks to zero when
w̃ ⌅ w̃max ⇥ ⇥/�2, or in other words for w ⌅ wmax ⇥
⌅⇤2/b: the range of variations for the state parameter is
automatically constrained, as in the ordinary Witten case
[35].

The finite range of variation of the state parameter can
be understood in the following way. Imagine a region
along the string network where a statistical fluctuation on
the phase gradient implies the condensate should form
with a very large value of w. This gives the would-be
condensate enough momentum to pass over the poten-
tial barrier (10), and hence blocks the instability to ef-
fectively take place until the fluctuation goes to a more
reasonable value below the maximum (⌥⇧)2 ⇤ wmax.

These equations are derivable from the dimensionless
action S+, where

9

S± =
⌥ ⇧

Ẋ2 + Ẏ2 + w̃Ṗ2 +
Q̇2

⇧2 ± w̃
�
X2P2 + (� + P)2 Y2

 
+

Q2X2 + (Q � n)2 Y2

⇧2 +
1
2
⇥
�
X2 + Y2 � 1

⇥2
⌃
⇧ d⇧, (48)

FIG. 5: Values of the condensate function P0(0) and Y0(0) in the
string core (⇧ = 0) as functions of the rescaled state parameter
w̃ for � = 1 and various values of ⇥ (same as on Fig. 3).

which is used to produce the numerical solutions shown
on Fig. 2 that are discussed below. The quantities S±
serve to define the energy per unit length and tension
through

U = 2⌅⇤2S+ and T = 2⌅⇤2S�. (49)

We also derive the currents in terms of dimensionless
variables as

I =
⇤

e
⌅
�

2w̃
⌥

(� + P) Y2⇧ d⇧, (50)

It is shown on Fig. 4 as functions of w̃.
Eqs. (48) and (49) permit to show explicitely, using

the asymptotic behaviors derived above for ⌃, that the
energy and tension are both well behaved at the would-
be phase frequency threshold w⌃ 0. In terms of dimen-
sionless variables, we have, for ⇧ ⇧ 1, that Y(⇧) behaves
as Y ⌅ f (w̃)w̃n/2�1/4e��

�
w̃⇧/
�
�⇧, where f (w̃) is an un-

known function of w̃ whose behavior for small values of
the state parameter limw̃⌃0 f (w̃) is a constant.

Now, in this small w regime, it is a simple matter to
evaluate the leading behavior of the integrated quanti-
ties, as most of the field hardly depend on w: as shown

on Fig. 5, the condensate value at the string core and
the current gauge function P, as well as the background
fields X and Q, are essentially independent of w. The
only term that really matters for the variation of the in-
tegrals with w is the asymptotic behavior of the current
carrier ⌃: as in the ordinary Witten case, the conden-
sate tends to spread around the string around the phase
frequency threshold, i.e. here in the almost chiral case.
Thus, assuming the asymptotic behavior to hold from a
distance ⇧M on, the dominant contribution � comes from
the Y terms in Eq. (48), namely

�± =

⌥ ⌥

⇧M

⇤
Ẏ2 ± w̃ (� + P)2 Y2 +

(Q � n)2

⇧2 Y2

+⇥
�
X2 � 1

⇥
Y2 +

1
2
⇥Y4

⌅
⇧ d⇧.

For ⇧ > ⇧M, one can further make the assumption that
the other fields have reached their asymptotic regime,
namely we can set (P,Q) ⌃ 0 and X ⌃ 1, so the only
important contributions end up being

� =

⌥ ⌥

⇧M

⇤
Ẏ2 ± w̃�2Y2 +

n2

⇧2 Y2 +
1
2
⇥Y4

⌅
⇧ d⇧,

which can be explicitly calculated. Neglecting irrelevant
constant terms and keeping only the leading contribu-
tions, this gives, for n = 1 (the general case leads to
similar conclusions but is merely more involved and, as
discussed above, not relevant to the current discussion
since the type II vortices here considered are unstable for
n > 1, splitting into n unit winding vortices)

� ⌅ A ± Bw̃ +C
�

w̃ + Dw̃ ln w̃,

where A, B, C and D can be evaluated as asymptotic in-
tegrals over the fields that do not depend on w̃.

What makes U di⇥erent from T as functions of w̃ is,
in the above expression, the second term involving B. In
the limit w̃ ⌃ 0, this term rapidly becomes negligible,
and the dominant contribution thus implies that U and T
evolve in similar ways with respect to w̃, the unique pa-
rameter describing the string state. As a result, variations
of the tension with the energy per unit length are always
positive, so the longitudinal perturbation velocity

c2
L
⇥ � dT

dU
⇤ 0, (51)

is negative in the limit w̃⌃ 0. Numerical calculation for
the full range of available variations of w̃ shows that in
fact, Eq. (51) is valid for all possible states attainable by
the strings under scrutiny here.

Unstable vis-à-vis longitudinal (sound like) perturbations
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Evaluating the cosmological consequences of currents

Cusps… constraints 
currents can be electromagnetic: new effects (many already ruled out) 
                     => gravitational pull, not only Kaiser-Stebbins 
Equation of state completely different: network dynamics?  
(most people say currents will not change the overall dynamics… argument?)
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Semi-local string polemics settled…

Conclusions

Vortons? 
Currents at least stemming from Brownian motion on long strings:  
possibly small but nevertheless physically (cosmologically) relevant?

B. Hartmann and PP, Phys. Rev. D86, 103516 (2012) [1204.1270]
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Conclusions

Vortons? 
Currents at least stemming from Brownian motion on long strings:  
possibly small but nevertheless physically (cosmologically) relevant?

Thank you for your attention!

B. Hartmann and PP, Phys. Rev. D86, 103516 (2012) [1204.1270]


