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Introduction

Nambu-Goto string simulation.

Flat space motion:

x =
1

2
[a(σ − t) + b(σ + t)]

with a
′2 = b

′2 = 1.

⇒ If we know a and b, we can determine x at any time
without simulation.

Exact (in flat space). No “minimum simulation
resolution”. No “points per correlation length”. Loops can
(and do) form any size.



Form of a and b

What functional form for a and b?

Piecewise linear (a′ and b
′ piecewise constant).

Initial cond Vachaspati-Vilenkin.
String straight across each cell. Two
kinks (one in a, one in b) at each
face.

Can use more. No significant effect
on results.

Initial conditions have no features
below VV cell size, but such features
can (and do) develop.



String world sheet

Linear pieces of a combine with linear pieces of b to form
flat “diamonds”.
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Evolution

2-D world sheet embedded in 4-D spacetime. Sheets may
intersect at points.

We store all diamonds existing at current time.

Evolve world sheet of all strings; look for intersections.

At intersection, split segments that intersected, reconnect.
Still piecewise linear.



Expanding universe

Comoving coordinates: expansion → redshifting.

In exact evolution, string segments
become curved. Each segment
remembers its entire past: too much
data.

Instead, handle redshifting only at
first order, so that new edges are
straight (but interior curved).

String slows down, diamond curves
upward.

First order in
(segment size)/(Hubble distance),
so improves rapidly with time.



Loop removal

Loop of length L with N segments each of a and b.

In one oscillation, each a combines with each b.
Computational effort N2.

Amount of time simulated L/2. Thus if L tiny, simulation
goes very slowly.

⇒ Small loops must be removed.

Loop identification procedure: must not intersect itself or
rejoin long network for 2 oscillations.

Then record, remove loop.



Parallelization technique

Rather than dividing up the spatial volume into regions for
different processors, we divide spacetime volume into a large
number of cubical regions.

Each region can be simulated independently of others. So
no coordination between processors is needed. Each region
can be run when 4 predecessors have finished.

No particular number of processors required.



Scope of simulation

In units of initial Vachaspati-Vilenkin cell size (= correlation
length of initial conditions) we have done a box of

2000 units on a side in flat space
1500 in the radiation era
1000 in the matter era (but only for 500 units of conformal
time)

CPU time not too long because no extra points introduced
except at actual intersections. One radiation-era run of size
1500 takes 4000 core-hours, < 1 day real time.



Scope of simulation

Dynamic range (= conformal end/conformal start).
Depends on initial clock setting. With fixed initial
conditions, match network parameters to scaling solution at
best-fit time.

Figure of merit: interstring distance approaches scaling
values quickly as possible.

Radiation era: start t = 6, dynamic range 251.
Matter era: start t = 9, dynamic range 56.



Results

Scaling: all linear quantities should be proportional.

Divide everything by horizon distance:

Interstring distance d =
√

µ/ρ∞. Scaling: d/dh.

Scaling loop length: x = l/dh.

Scaling loop production rate: f(x)

f(x)dx = number of loops formed in volume d3
h
in time dh

with sizes in range dx.



Interstring distance d/dh.
Two runs of size 1000 in the matter era
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Loop production function:
3 runs of size 1000 in the matter era
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Loop production function:
7 runs of size 1500 in the radiation era
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Where do the little loops come from?



That’s all, Folks!

Coming up:

Ben on loop number distribution.

Jose on shapes of loops and presence of cusps.


