The direct assessment support documents consist of a set of documents for each of the two
courses (Physics 145 Classical Electrodynamics and Physics 163 Quantum Mechanics) selected
by the Department of Physics and Astronomy for the evaluation purpose. Each set consists of
(1) the evaluation summary provided by the instructor in the course, (2) the selected problems,
and (3) a sample of an excellent performance by a student on each of the selected problems.



Physics 145 Summary of Direct Assessment Fall 2011

The Physics 145 final examination included 5 problems, each based on material
from ].D. Jackson’s book “Classical Electrodynamics” (34 edition). The students
were given 2.5 hours or about one-half hour per problem. The class included 6
physics graduate students and two engineers. An assessment of the performance of
the physics graduate students on two problems from the final exam was requested.
The instructor chose problem one as the problem with the highest combined score
for all students (“easy”) and problem two as the problem with the lowest combined
score for all students (“hard”). Each student’s work is rated on three criteria: 1)
constructing a mathematical representation of the physical system, 2) carrying out
the mathematical analysis, and 3) relating the results to the physical problem. In
each category the ratings are: Proficient (P), Satisfactory (S), and Needs
Improvement (N). The results were:

Problem 1 (easy)  Criterion1 Criterion2  Criterion 3

Student 1 P P S
Student 2 P P P
Student 3 P P P
Student 4 P P S
Student 5 P P P
Student 6 P P P

Problem 2 (hard)

Student 1 N S P
Student 2 S N P
Student 3 N S P
Student 4 N N N
Student 5 P P P
Student 6 P P P

Note that some students chose not to do some parts of problem two, and the N
rating is applied in these cases. Students were not expected to complete all parts of
all problems.

Austin Napier, instructor for Physics 145



Notes on problems 2 and 3 from the Physics 145 final exam from Fall 2011

In problem 2(a), students are expected to use Bessel function expansions to show
that only the phi-component of the vector potential is non-vanishing, and derive a
simplified integral form. In problem 2(b) they should use the result of 2(a) to derive
an exact formula for B(z) (or at least indicate how to do it). In problem 2(c) the
exact result from part (b) should be compared to the result obtained from the Biot-
Savart Law. If the student did not do parts (a) and/or (b), full credit was given for
part (c). Note that use of the Biot-Savart Law in part (c) is a typical problem in PHY
12.

In problem 3(a), students are expected to write the Boundary Conditions for a
dielectric cylinder placed in a uniform electric field. The case of the dielectric
sphere was done in class. In problem 3(b), they are expected to calculate the
electric potential both inside the cylinder and out. In problem 3(c) they should
calculate the electric field both inside and out. In part (d) they should determine the
polarization vector inside the cylinder and also find the polarization surface charge
density (or at least indicate how to find these).

The students were allowed to refer to the textbook during the exam.

Austin Napier, Instructor for Physics 145
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9. A circular current loop of radius R carries a steady current I and lies in the x-y plane with its center at

the origin. =
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7. Show that the only non-vanishing component of the vector‘potential is As and show that Ay(p, z)
is given by the formula in Jackson problem 5.10a, or by the formula in problem 5.10b. (Choose one

or the other, not both.)



9b. Use vour result from part (a) to calculate the exact formuia for the magnetic induction FB(z) along

the z-axis.
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‘induction B(z) along the z-axis. Is your result

9¢. Use the Biot-Savart Law to calculate the magnetic
consistent with (b}? .
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3. A very long cylinder of radius R is filled with uniform an
There are no free charges anywhere. The cylinder is placed in an initially uniform electric field E¢ with

the axis of the cylinder perpendicular to the field direction, as showmn:
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3a. Write down the boundary conditions at p =R. Take z to be the coordinate along the cylinder axis

and choose x along the direction of .

3b. Find the electric potential everywhere, _inside and outside of the cylinder.



3¢. Use the potential to calculate the alectric field inside the cylinder.

3d. Determine-the .polarzzatioh_véct_or‘?’ inside the cylinder and calculate the polarization surface

charge density on the cylinder.
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9 A circular current loop of radius K carries a steady current I and lies in the x-y plane with its center at

the origin.
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9b. Use your tesult from part (a) to ealeulate the exact formula for the magnetic induction ?(2} along

the z-axis.
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9. Use the Biot- Savart Law to calculate the magnetlc induction ?(z) a\loncr the z-axis. Is your resul
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December 27,2011
W. Anthony Mann

Evaluation of Student Performance
in Physics 163 (Quantum Mechanics)

The evaluations below are based upon the Final Exam for the course, held on Monday
December 19, 2011 from 2:00 pm to 6:00 pm. The Exam was a closed book exam,
however one ** formula sheet” prepared by each student was allowed. The exam cover
sheet listing the topic of each of its six questions is attached. I have selected questions
#3 and #6 to be ones which are appropriate for this evaluation; the questions are original -
to my knowledge they do not appear in any textbook.

The rating criteria are as follows:
1. Constructing a mathematical representation of the physical system.
2. Carrying out the mathematical analysis.
3. Relating the results to the physical problem.

The rating uses a three-level scale: Proficient or Satisfactory or Needs Improvement .

The seven students who completed the course are rated as follows:

Student Criterion 1 Criterion 2 Criterion 3
#1 P P P

#2 S NI NI

#3 P S S

#4 P P P

#5 S S S

#6 S S NI

#7 P | S

General comment: In terms of work ethic, lecture attendance, and substantive
questions, the group evaluated here ranks among the top 30% of graduate classes to
whom 1 have taught this course.



Physics 163 Quantun Mechanics Final exam December 2011

PROBLEM #3

It is speculated that virtual reactions involving an unknown force may enable a
neutron state | n> to transition into an anti-neutron state | u> and visa versa. The
Hamiltonian for this ““neutron osciilation™ is

H = E (In>nl + lu><ul) + A(in><ul + lu><nl)
where E, and A are constants having units of energy.

3a) Using the neutron and the anti-neutron states as a basis, express the Hamiltonian H
as a sum of elemental matrix operator forms.

[5 pts]

3b) Show that the time evolution operator for particle states |1 > of the Hilbert space
spanned by { In>, |u> }, has the form of an oscillating phase factor times a
Drehung involving a time-dependent rotation angle.
[ 20 pts]

3c) At time t=0, a pure neutron state |y(0) > = | n>is created. Using the time
evolution operator or else by other means, determine the shortest time after t = 0
when the experimentalist can be absolutely certain that the quantum state
has become that of a pure anti-neutron | u >.
[ 25 pts]



Physics 163 Quantum Mechanics Final exam December 2011
PROBLEM #6

The atomic magnetic dipole moment operator is

M = HogLL + Hogss

6a) Express M as an irreducible tensor operator and relate it to its Cartesian components.

[5 pts]

6b) We wish to evaluate the magnetic moment of a particular atomic state for which
{, s, and j have specific values. The relevant expectation value is
<{s;jmIMI¢,s: jm> . Based upon this expectation value, what can

be said about the relative magnitudes of <M, >, <M, > ,and <M, >?

[ 10 pts]

6¢) Briefly discuss the projection theorem. What is it based upon ?

In what sense does it enable an evaluation to be ~" projected” ?
[ 10 ptsj

6d) According to the physicist Alfred Lande, atomic magnetic dipole moments
are well-described by

<M, > = (/2 mh{(g+es) + (B-g) [L(L+1) -s(s+D V[ (j+DI}

Using angular momentum formalism, derive Lande’s formula.
[ 25 pts]



PROBLEM #3: Page 3

It is speculated that virtual reactions involving an unknown force may enable a
neutron state | n> to transition into an anti-neutron state | u > and visa versa. The
Hamiltonian for this ““neutron oscillation” is

H= E/(In><n! + fu><ul) + A(In><ul + lu><nl)

where E, and A are constants having units of energy.

3a) Using~the neutron and the anti-neutron statS\as a basis, express the Hamiltonian H
as a\gum of elemental matrix operator forms
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PROBLEM #6: Page 6

The atomic magnetic dipole moment operator is

M=pgL + P«ogss

6a) Express M as an irreducible tensor operator and relate it to its Cartesian components. O
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