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Abstract. Finding numerical solutions describing bubble nucleation is notoriously difficult
in more than one field space dimension. Traditional shooting methods fail because of the
extreme non-linearity of field evolution over a macroscopic distance as a function of initial
conditions. Minimization methods tend to become either slow or imprecise for larger numbers
of fields due to their dependence on the high dimensionality of discretized function spaces.
We present a new method for finding solutions which is both very efficient and able to cope
with the non-linearities. Our method directly integrates the equations of motion except at a
small number of junction points, so we do not need to introduce a discrete domain for our
functions. The method, based on multiple shooting, typically finds solutions involving three
fields in around a minute, and can find solutions for eight fields in about an hour. We include
a numerical package for Mathematica which implements the method described here.
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1 Introduction

The thermal or quantum mechanical nucleation of bubbles initiates a first-order phase tran-
sition. This phenomenon has application in diverse areas of physics including superfluid
Helium-3 [1, 2], Higgs-induced vacuum decay, [3–7], baryogenesis and gravitational waves
from a first-order electroweak phase transition [8–14], and quantum gravitational instabili-
ties [13, 15, 16]. The idea that the observable universe represents but one vacuum [17, 18]
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Figure 1. Left panel shows a potential with two vacua. The left vacuum ϕtv is stable and denoted
as the “true vacuum.” The right vacuum ϕfv, which is meta-stable, is called the “false vacuum.” Right
panel shows the field profile that carries the tunneling.

in a diverse landscape of string vacua [19, 20] motivates a study of false vacuum decay in
high-dimensional field spaces [21–28].

Quantum field theories with an effective potential U(φ) have perturbatively stable vacua
corresponding to the local minima of U(φ). Non-perturbative effects can destabilize these local
minima via the spontaneous nucleation of bubbles containing a lower energy perturbative
vacuum [29]. Instanton methods [30, 31] provide a simple and elegant treatment of this
process. The primary calculation is a Euclidean O(4)-symmetric “bubble” field profile (called
the bounce) which smoothly interpolates between a true-vacuum configuration at its center
and the false vacuum whose decay is being described. Once this is calculated, the decay rate
follows, as well as the field configuration for the formation and evolution of a single bubble.

This paper is structured as follows. We briefly review the bounce formalism in section 2.
In section 3 we describe simple algorithms for finding the bounce solution and the problems
they face. In section 4 we describe our more robust method for finding the bounce. In
section 5 we give some simple examples, and in section 6 we describe the abilities of our code.
In section 7 we compare our method with other methods, and we conclude in section 8.

2 O(4) bounce formalism

In this section we follow Coleman [30]. We start from the Lagrangian for a scalar field in flat
space,

L =
1

2
∂µφ∂

µφ− U(φ) , (2.1)

where U(φ) is a potential with two minima. An example is shown in Figure 1. The tunneling
is described by a solution to the Euclidean (x0 → −iτ) equations of motion,

∇2φ =
∂U

∂φ
. (2.2)

Assuming that the field has an O(4) symmetry, i.e., φ(x) = φ(r) where r =
√
τ2 +

∑
x2
i ,

(2.2) simplifies to
d2φ

dr2
+
D − 1

r

dφ

dr
=
∂U

∂φ
, (2.3)
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where D is the number of spacetime dimensions. This is the equation of motion for a par-
ticle that moves in the “upside-down” potential −U(φ) under the influence of the velocity-
dependent “friction” term (D − 1)/r. The boundary conditions are

φ′(0) = 0, lim
r→∞

φ(r) = ϕfv, (2.4)

where the prime denotes differentiation with respect to r.
It is the friction that allows the field to roll to a stop atop the false-vacuum hill, which

is lower than the true-vacuum initial position. Since friction weakens inversely with the time
parameter r, beginning too close to the peak of the true-vacuum hill will result in a large
initial delay, and so too little friction when velocities are large; the field will overshoot the
false vacuum.

The simplest non-constant solution with the above properties is known as the bounce.
A typical potential and the corresponding bounce field profile are shown in Figure 1. The
tunneling rate is given by Γ = Ae−B, where B is the Euclidean action of the corresponding
bounce minus the action of the false vacuum configuration.

Generalization of this problem to more than one field is straightforward. We denote the
fields by φ = (φ1, φ2, . . . , φN ) and the potential by U(φ). The bounce is then a solution to
the system of coupled ordinary differential equations

d2φi
dr2

+
D − 1

r

dφi
dr

=
∂U

∂φi
, (2.5)

with boundary conditions dφ/dr|r=0 = 0 and limr→∞φ(r) = ϕfv. This is a system of N
second-order equations with N boundary conditions at r = 0 and another N at r = ∞.
The field must begin at r = 0 from some specific point at the center of the bubble and
asymptotically approach the false vacuum infinitely far away. Finding the solution to the
bounce equations is tantamount to determining the values of the fields at r = 0.

For a single field, Coleman [30] used an overshoot-undershoot argument to prove that
there is always a bounce that connects a higher meta-stable vacuum to an adjacent lower
energy vacuum. However, with more than one field there are cases where no solution exists,
as shown, for example, in figure 2.

There are also cases that have more than one solution. With more than one field, there
may be more than one “mountain pass” connecting the two vacua, as in figure 7 below. Each
pass gives rise to its own instanton. Even with only one field, there are cases with multiple
solutions. One example is shown in figure 3, where we drew the upside down potential.
Regions shown in red overshoot the true vacuum, while those shown in black undershoot.
Thus the right edge of the upper red region and the two edges of the lower red region are
each a solution.

For a thermally induced first-order phase transition the formalism is quite similar [1, 31].

3 Solution techniques

The most straightforward method to find the bounce numerically would be shooting from the
initial condition φ(0) = ϕ0. Starting from some guess for ϕ0, we could integrate the equations
of motion to large r. The correct value of ϕ0 yields the desired asymptotic boundary condition
φ→ ϕfv. We could iteratively improve ϕ0 based on how close φ comes to ϕfv.

This technique requires integrating the differential equation (2.5) from r = 0 to large r.
For a single field, so long as we are descending the inverted potential from the true vacuum,
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Figure 2. In this two-dimensional potential there is no instanton connecting the two minima on the
right. The problem is that tunneling between the two minima is dominated by tunneling to lower
values on the left.

ϕ

-U(ϕ)

Figure 3. A one-dimensional potential, shown inverted, that has more than one solution.

this equation is stable. But as we ascend the inverted potential toward the false vacuum, it
becomes unstable. The desired solution asymptotically approaches ϕfv, but there is another
solution which more and more rapidly falls down the hill. This growing mode causes numerical
instability that makes it impossible to find the solution with the correct φ → ϕfv boundary
condition.

This problem can be avoided by a “double shooting” scheme [32]. We pick φ0 as above
and pick also some large but finite value rmax and a field value φ(rmax) = ϕmax there. Then
we integrate (2.3) to the right from r = 0 and to the left from rmax, and demand that the
two solutions match at some intermediate location. We then attempt to iteratively improve
φ0 and ϕmax.

The double shooting technique works reasonably well for one field, but for additional
fields we face additional problems. One problem is that the solution may travel along a “ridge”
in the inverted potential. In this case, there is an unstable mode that falls off the ridge instead
of traveling along it. Reversing the direction of integration does not help this problem.

This problem exists even when the field is descending the inverted potential. Unless it is
following the steepest descent, modes that descend in steeper directions will always be more
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unstable than the desired mode. This occurs even near the true and near the false vacuum.
A related problem is that in many cases, ϕ0 can never be specified with sufficient accu-

racy.1 For example, consider a potential which near the true vacuum has the form

U(φ1, φ2) = 10(φ2
1 + φ2

2)− 16φ1φ2. (3.1)

Neglecting friction, the solution is

φ1 = Ae2r +Be6r, (3.2)
φ2 = Ae2r −Be6r. (3.3)

Suppose we want to reach φ = (2, 0) at r = 10. Then we need A = e−20, B = e−60, and
thus ϕ0 = (e−20 + e−60, e−20 − e−60). But in double-precision floating point, e−20 ± e−60

is indistinguishable from e−20, so we end up with ϕ0 = (e−20, e−20), and thus φ(10) =
(1, 1) instead of (2, 0). Including the friction term would lead to Bessel functions instead of
exponentials, but the effect is the same.

4 Description of the method

As mentioned in section 2, the simple shooting methods for solving the bounce equations
face several difficulties, which we address here. The most significant problem is solving a set
of differential equations that are unstable. We overcome this problem using a multi-interval
shooting method described in subsection 4.1. At the center of the bubble (r = 0) there is a
divergence in (2.5). Additionally, the other boundary condition is set at r =∞, which cannot
be represented as a floating-point number. We solve these problems by using an approximate
analytic solution in subsection 4.2. In subsection 4.3 we add an additional variable to the set
for which we are solving, in order to make it easier for the system to change the solution by
translation in r, in subsection 4.4 we rescale the potential so that all function values used in
the solution have similar ranges, and in subsection 4.5 we make changes to the division points
between the shooting regions.

To find the bounce solution using shooting methods we need to come up with an initial
guess. The procedure for finding a good initial guess is described in subsection 4.6. After we
find the solution, we need to calculate the action, which is discussed in subsection 4.7.

Solving non-linear equations using steepest decent guarantees that the steps taken to-
ward the solution are small, but this method converges slowly. On the other hand Newton’s
method converges rapidly, but can take dangerously large steps. We use Powell’s hybrid
method, which converges quickly near the solution, yet takes reasonable steps far away from
it. This is explained in appendix B. To use the this method we need to calculate the Jaco-
bian of the field values with respect to the initial conditions. We use an accurate method
for calculating the Jacobian which is described in appendix A. Appendix C explains how to
download and run the code.

4.1 Multiple shooting method

The differential equations (2.5) are unstable in the sense that there are growing and decaying
modes, and the growing modes may have different rates of growth. Unless we are interested

1The one-field version of this problem is discussed by Wainwright [33], who solves it by using the logarithm
of the distance from the true vacuum as a parameter.
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in the fastest mode, a small admixture of this mode from numerical error will eventually over-
power the solution of interest. To avoid this problem, we integrate the differential equations
only over a range of r small enough that the growth is tolerable, and put together several
such regions to cover the needed range of r. This method is known as multiple shooting [34].

To understand the degree of instability, let us expand U(φ) around some specific point
ϕ1 to quadratic order,

U(φ) = U(ϕ1) +Ai(φ−ϕ1)i + (Bij/2)(φ−ϕ1)i(φ−ϕ1)j +O(φ−ϕ1)3 , (4.1)

where

Ai =
∂U

∂φi

∣∣∣∣
ϕ1

, Bij =
∂2U

∂φi∂φj

∣∣∣∣
ϕ1

. (4.2)

If we use (4.2) and ignore the frictional term in (2.5), we have

d2φi
dr2

= Ai +Bij(φ−ϕ1)j . (4.3)

We can diagonalize the symmetric matrix Bij using an orthogonal matrix O, so Bij =
OkiB̃klOlj with B̃kl = diag(B1, B2, . . . , BN ). Define φ̃i = Oij(φ − ϕ1)j and Ãi = OijAj ,
so that

d2φ̃i
dr2

= Ãi +Biφ̃i . (4.4)

Assuming that all Bi are positive, which is the case near the true and false vacua, but not
everywhere, the solutions to (4.4) include a mode that grows as e

√
Bi and one that shrinks as

e−
√
Bi . If Bmax is the largest of the Bi, then the worst case is that the correct solution goes

as e−
√
Bmax , so the fastest-growing mode grows relative to the correct solution as e2

√
Bmax .

Let the domain r ∈ [0,∞) be divided by n ≥ 3 intermediate points, {r1, r2, . . . , rn}. We
discuss the method of choosing these points in subsection 4.6. At each step, our variables are
the values of the field at r1 and rn and for n > 3 the field and its derivative at r2, . . . , rn−2.
Notice that we do not use the value of the field and its derivative at rn−1 as variables. As
described in the next subsection, we do not solve the differential equation for r < r1 nor
r > rN . Instead, in these regions, we approximate the potential by a quadratic and so get an
analytic solution for φ(r), and using this solution we determine φ′(r1) and φ′(rn). Having
the field and derivatives we can do the following numerical integrations of (2.5):

1. Integrate from ri to ri+1 for i = 1 . . . n− 2 to obtain φL(ri+1) and φ′L(ri+1).

2. Integrate from rn to rn−1 to φR(rn−1) and φ′R(rn−1).

Here φL and φR denote the values of these quantities obtained by integrating from the left
and from the right, respectively. Since we want a smooth solution to the equations of motion,
we try to match the values of φL and φ′L with the corresponding variables at r2, r3, . . . rn−2

and φL and φ′L with φR and φ′R at point rn−1. This is shown for n = 3 and n = 4 in Figure 4.

The problem is now reduced to finding the values of (2n − 4)N variables that satisfy
(2n − 4)N equations. We use Powell’s hybrid method, described briefly in appendix B, for
this purpose.

The reason for shooting toward the left in the last interval is that in this interval (at
least by rn) the inverted potential is increasing toward the false vacuum. Shooting forward
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Figure 4. The left panel shows the parameters used when there are only three points. We try to find
φ(r1) and φ(r3) to make φL(r2) = φR(r2) and φ′

L(r2) = φ′
R(r2). The right panel shows the case of

four points. Here we try to find φ(r1), φ(r2), φ′(r2), and φ(r4) to make φL(r2) = φ(r2),φ′
L(r2) =

φ′(r2), φL(r3) = φR(r3), and φ′
L(r3) = φ′

R(r3).

corresponds to going uphill which is unstable in proportion to the largest eigenvalue around
the false vacuum, but shooting downhill is only sensitive to the difference between eigenvalues,
and hence we reduce the sensitivity of the solution. A possible improvement would be to shoot
toward the left for more intervals if the potential is also increasing there, but we don’t have
any way to know in advance which these will be, and so we did not implement this technique.

4.2 Analytic solutions

As described above, we use closed-form solutions to equations with an approximate potential
for r < r1 and r > rN . This technique solves the problem where finite numerical accuracy
makes it impossible to solve the equations of motion at φ = ϕ0, and another problem where if
we integrate the differential equation for sufficiently large r, numerical inaccuracy will always
lead to a divergence.

4.2.1 Analytic solution for large r

When the field is very close to the false vacuum, we can approximate U(φ) with a quadratic.
This allows an approximate analytic solution for φ. Of the two solutions to the second order
field equations, we clearly want the one which approaches a constant as r →∞. This enables
us to deduce φ′(rn) as a function of φ(rn). We then use φ(rn) and φ′(rn) to integrate
backward to rn−1 and apply the matching conditions there.

So consider rn large enough so that the fields φ(rn) are very close to their false vacuum
values. Unless the field has the correct derivative, it will fall off the hill in some direction;
for a given φ(rn) there is a unique φ′(rn) that lands on the hilltop. The potential is given by
the expansion (4.1) around ϕfv, with Ai = 0 here, and the equation of motion becomes

d2φ̃i
dr2

+
D − 1

r

dφ̃i
dr

= Biφ̃i . (4.5)

We are interested in the solution which approaches φ̃i(r) = 0 as r →∞, which is

φ̃i(r) = Cir
2−D
2 KD−2

2

(√
Bir
)
, (4.6)
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where K(D−2)/2 denotes the Bessel function of type K, and the Ci are constants. Returning
to the original field variables,

φi(r) = ϕfvi +
∑
j

OjiCjr
2−D
2 KD−2

2

(√
Bjr

)
. (4.7)

For a given φ(rn) we determine the Ci and from there calculate φ′(rn), which we use to shoot
towards rn−1.

4.2.2 Analytic solutions near the center of the bounce

The situation near r = 0 is similar. We do not use ϕ0 as a parameter, but instead use
ϕ1 = φ(r1). Here we do not assume that ϕ1 is close to the true vacuum, and we expand not
around ϕtv but around ϕ1, which is accurate as long as the ϕ0 that we infer is not too far
from ϕ1.

The expansion is exactly as in (4.1), and the resulting equation of motion is

d2φ̃i
dr2

+
D − 1

r

dφ̃i
dr

= Ãi +Biφ̃i . (4.8)

The initial condition φ̃′i(0) = 0 picks out the solution with I-type Bessel functions,

φ̃i(r) = Cir
2−D
2 ID−2

2

(√
Bir
)
− Ãi
Bi

, (4.9)

and the requirement that φ(r1) = ϕ1, so φ̃i(r1) = 0, fixes the Ci, giving

φ̃i(r) =
Ãi
Bi

[(r1

r

)D−2
2

ID−2
2

(r
√
Bi)

ID−2
2

(r1

√
Bi)
− 1

]
. (4.10)

In the original field variables,

φj(r) = φ1j +
∑
j

Oji
Ãj
Bj

[(r1

r

)D−2
2

ID−2
2

(r
√
Bj)

ID−2
2

(r1

√
Bj)
− 1

]
. (4.11)

Thus from ϕ1 we can find the derivative φ′(r1), and we use these to shoot to r2.

4.3 Adding a new variable

A generic field profile of the correct bounce solution (e.g., figure 1) has plateaus at small
and large r and a relatively small transition region. However, we do not have any a priori
knowledge of the r values near the transition. This leads to an important numerical difficulty.
The differential equations in (2.5) exhibit an approximate r-translation symmetry that is
broken by the friction term. If φ(r) is a solution, φ(r+∆) would almost satisfy the differential
equation and we will be in a situation depicted in Figure 5. If the code finds a translated
version of the field profile, it nearly satisfies the constraints. While the two profiles are simply
related by translation in r, in the field variables used in the solution, φ(r1), φ(r2), φ′(r1), . . .
the translation is very complicated, requiring adjustment of all variables in a coordinated
way. This makes it difficult for the code to make progress after finding the translated profile.
A similar issue was discussed in Ref. [35]
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r

ϕtv

ϕfv

ϕ

Figure 5. Correct (solid blue) and translated (dashed red) field profiles. If the code finds the
translated profile, it may be difficult for it to find the correct profile.

To solve this problem, we add to the variables used by the equation solver an additional
variable ∆, representing a translation of the parameters ri. Instead of using the set of points
r1, r2, . . . , rn shown in Figure 4 we use the set of r1 + ∆, r2 + ∆, . . . , rn + ∆. Thus changing
∆ does not change the values of the fields and derivative variables, but changes the location
where these variables are applied, making it simple for the solver to move in the direction of
translations in r.

By introducing ∆, we have one more unknown than our equations, so there are infinitely
many solutions, but any one is the solution to the problem, expressed in its own way. This
method proves to be very effective and extends the range of potentials for which the code can
find solutions. This technique is discussed further in Ref. [36].

4.4 Rescaling

The bounce solution has a simple transformation under rescaling of the fields and the poten-
tial. If the potential U(φ) has the bounce solution φ(r), then the potential V (χ) = αU(χ/β)
has the bounce solution χ = βφ(

√
αr/β). The solution is also invariant under a constant

offset of the potential.
We take advantage of these transformations to modify the potential and the field so that

the distance between the true and the false vacua is 1, the value of the potential at the true
vacuum is 0, and the maximum value reached by the potential along the initial path from
the true to the false vacuum is 1. These choices mean that the values of the field and its
derivatives that we try to match are all of the same order, which makes it easier to find the
solution.

We also change the scale of the variable ∆ [36] by offsetting the ri by s∆ rather than
just ∆. We choose s to be the average of the ri values. This makes the magnitude of ∆
similar to that of the other parameters, even in extreme thin-wall cases with ri � 1.

4.5 Readjusting r values

We used approximate analytic solutions in sections 4.2.1 and 4.2.2. For these approximations
to be valid, we need r1 small enough and rn large enough so that ϕ1 is close to ϕ0 and
ϕn close to ϕfv. While we construct the initial guess (see section 4.6) so that this is true,
later improvement of ϕ1 and ϕn may move these values outside the range that allows for
an accurate approximation. Conversely, if ϕ1 is very close to ϕ0 or ϕn very close to ϕfv, it
means that we can use the analytic solution for larger regions.
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To keep ϕ1 and ϕn in the desirable ranges, we use a constant, fs, giving the permissible
distance between ϕ0 and ϕ1 and another, fe, giving the permissible distance between ϕn and
ϕfv, both as a fraction of the distance from ϕtv to ϕfv. Both constants default to 0.01. If the
code reaches distances that are larger, we add new r points below the current r1 or above the
current rn to the points r1, . . . , rn, and if they are much smaller (by factor 10), we remove
points from r1, . . . rn and use the analytic solution over a larger range.

4.6 Choice of the initial profile

Probably the most important step in solving a set of equations is choosing an initial point
for the solver which is close to the real solution. A bad choice which is out of the basin of
attraction would make it impossible to find the solution. When we have more than one field,
there are two parts to the initial guess: what path through field space should the initial profile
follow, and how should it move along this path as a function of r?

For the path, by default we simply take a straight line from the true to the false vacuum.
But we also allow specification of a set of points {ϕ1, . . . ,ϕP } through which the initial
solution must go. In this case we draw a smooth curve (a cubic spline, or quadratic if P = 1)
through the points {ϕtv,ϕ1,ϕ2, . . . ,ϕP ,ϕfv}. We parameterize this path as φpath(λ) with
λ = 0 . . . 1.

For the shape of the profile as a function of r, we use an initial guess based on a thin-wall
analogy. We first define a one-dimensional potential

U1d(λ) = U(φpath(λ)) + (3λ4 − 4λ3)(U(ϕfv)− U(ϕtv)) . (4.12)

This modified potential has two degenerate minima at λ = 0 and λ = 1 and it shares the
same curvature with the original potential at the true vacuum. This potential allows for a
domain-wall solution in the form

r(λ) = r0 +

∫
dλ√

2U1d(λ)

∣∣∣∣dφpath

dλ

∣∣∣∣ . (4.13)

We can compute the surface tension of this solution,

σ =

∫
dλ
√

2U1d(λ)

∣∣∣∣dφpath

dλ

∣∣∣∣ , (4.14)

and determine the bubble radius in the thin-wall limit by setting the the energy of the bubble
wall according to Eq. (4.14) equal to the decrease in energy from the true vacuum inside,
giving

rthin =
(D − 1)σ

U(ϕfv)− U(ϕtv)
(4.15)

We chose the constant of integration r0 so that the field at the half-way path length
between true and false vacua is at rthin. The initial profile is then defined by inverting (4.13)
and using φinitial(r) = φpath(λ(r)).

Once we have the profile, we need to choose the points ri. We choose r1 to be midway
from the center to the edge of the region where the analytic approximation can be used, as
defined in section 4.5, and similarly rn midway from the false vacuum to the edge of the final
analytic region.

To decide how many ri values to use, we attempt to make the growth of the field during
any shooting region no more than a certain limit, by default a factor of 30. We make the
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approximation of exponential growth as in section 4.1. Thus the r values should be separated
by no more than δrmax where eδrmax

√
Bmax is the allowable growth and Bmax the largest

eigenvalue of the Hessian matrix. However, since we don’t know what values of the field we
will use, we find the eigenvalues of the Hessian in the true and false vacua and choose Bmax
to be the largest of any of these. Having found δrmax, we divide the range between r1 and rn
into the smallest number of equal segments that leads to an interval no more than δrmax.

4.7 Calculation of the action

Once we have found the correct profile for the instanton, we would like to find the tunneling
action. It is given by

S[φ] = AD−1

∫ ∞
0

drrD−1

[
1

2
∂rφi∂rφi + U(φ(r))− U(ϕfv)

]
= S1 + S2 , (4.16)

where AD−1 is the area of the unit (D–1)-dimensional sphere, and S1 is the kinetic term and
S2 the rest. Assuming that φ(r) is a solution to the equations of motion, we can transform
(4.16) in several ways. First, consider a family of scale-transformed functions φ(Λr). We can
calculate the action in (4.16) using the profile φ(Λr), following [37],

S(Λ) = AD−1

∫ ∞
0

drrD−1

[
1

2
∂rφi(Λr)∂rφi(Λr) + U(φ(Λr))− U(ϕfv)

]
= Λ2−DS1 + Λ−DS2 ,

(4.17)
This action must have a stationary point at Λ = 1, which implies

DS2 = S1(2−D) . (4.18)

We can also integrate by parts in S1. The boundary terms vanish, and we can use the
equation of motion (2.5) to find

S1 = −AD−1

2

∫ ∞
0

drrD−1 ∂U

∂φi
φi . (4.19)

Our goal is to give, as much as possible, the action of the correct instanton profile,
rather than the action of the actual profile that we found (which is divergent, because our
profile has small discontinuities where the shooting regions join). So we are free to make any
transformations to the action in terms of the exact profile, and then use the approximate
profile in the computation.

Computation using ∂rφi would be a poor choice, because the derivative is less accurately
represented than the function itself in the numerical result of solving the differential equation.
We might use (4.18) to write the action in terms of S2 alone, but this fails when D = 2. So
instead we use (4.18) to write the action in terms of S1 alone, and calculate that with (4.19).
As long as the profile can be differentiated analytically, using ∂U/∂φi does not introduce any
additional error.

Thus we perform numerically the integral

S[φ] = − πD/2

Γ(1 +D/2)

∫ ∞
0

drrD−1

[
∂U

∂φi
(φ(r))− ∂U

∂φi
(ϕfv)

]
φi(r) . (4.20)

With exact computation, ∂U/∂φi would vanish at the false vacuum. But numerical error can
give a tiny result, which we subtract off explicitly. This prevents it from being amplified into
an infinite error under the integral out to r =∞.
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Figure 6. The potential and field profile for the one-dimensional potential given in (5.1). This is an
example of a thick-wall solution solved in under four seconds.
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Figure 7. The potential and field profile for the two-dimensional potential given in (5.2). True and
false vacua are shown by the red and blue circles. Blue solid and red dashed lines correspond to φ1
and φ2. The true and false vacua are at (2.39338, 2.82768) and (4.56086, 2.81235).

5 Examples of potentials solved by the code

Here we show examples of one, two and four field cases solved using this code. We tried the
one-dimensional potential

U(φ) = φ4 − 12φ3 + 40φ2 . (5.1)

This potential has minima at φ = 0 and φ = 5, and the code calculated the bounce in under
4 seconds on a Macbook Pro. The potential and solution are shown in Figure 6.

As a two-dimensional example, we solved the bounce solution for the two-field potential
given by

U(φ1, φ2) = sin (φ1 − φ2) +
1

2
cos (φ1 + φ2) + cos 3 (φ1 + φ2) + 2 cos

3

2
(2φ1 − φ2) . (5.2)

This was solved in ten seconds on a Macbook Pro. The potential and field profiles are shown
in Figure 7.
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Figure 8. The potential and field profile for the four-dimensional potential given in (5.3). This is
an example of a thin-wall solution. The blue solid, red dashed, green dotted and black dot-dashed
correspond to φ1, φ2, φ3 and φ4.

As the last example we show a four-field case which took about fifteen minutes to get
the solution. The potential is given by

U = −1.2 cos(φ1 + 2φ2 − φ3 − φ4)− 1.25 cos(2φ1 − φ2 − 2φ3 − φ4)

−0.75 cos(φ1 − 2φ2 − 2φ3 − φ4)

− cos(φ1 + φ2 − φ3 + φ4)− 0.5 cos(φ1 − φ2 − φ3 − 2φ4) . (5.3)

We found the instanton that gives the tunneling from a false vacuum at (3.18979, 2.84979,
1.05933, 1.65474) to a true vacuum at (2.48005, 4.1149, 2.52733, 1.76197). The field profiles
are shown in Figure 8.

6 Quality of the code

We describe here more systematically the abilities of the code.

6.1 Range of application

We have successfully tested our code on random quartic potentials for N up to 9. We have
found bubbles whose radius is larger than the wall thickness by a factor of 200, and extreme
thick wall cases, where there is no clear distinction between the interior and the wall.

For comparison, Kusenko [38] computed actions for 8 fields, while Dasgupta [6] used 10
but computed only a bound on the action. As far as we know no other authors have used
more than 3 fields.

6.2 Success fraction

We tested our code with potentials in a box of side length L. We summed up to 10 Fourier
modes randomly chosen among those with with wavelengths down to L/6, with random
coefficients chosen from a Gaussian distribution. For each potential we found all minima and
calculated the action to tunnel from each minimum to the closest minimum, if that minimum
had a smaller energy.

For N = 2, the code succeeded 96% of the time in about 10,000 tries, with a typical
time about 10 seconds on a Xeon X5675 processor. For N = 3, the code succeeded in 95% of
about 3,000 tries, with a typical time of about 1 minute.
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6.3 Speed

Our code finds solutions in a matter of seconds for one to three fields, minutes for four to
seven fields, and hours for eight to nine fields. We have not attempted to run our code for
ten or more fields.

Most of the time is spent computing the Jacobian. The Jacobian for each shooting
region has 4N2 elements. These are determined by integrating a matrix differential equation,
as discussed in appendix A, which requires matrix multiplication, and thus 8N3 operations
for each integration step in the differential equation. One could perhaps abandon explicit
calculation of the Jacobian in favor of finite differences, or write a special-purpose program
for doing the integration. The code could also be run in parallel, at a minimum by handling
the different shooting regions on different processors.

6.4 Quality of solution

Our code supports computations with arbitrary precision numbers, so numerical error can
be made as small as desired at the price of significantly increased runtime. Unfortunately,
there is still an inaccuracy resulting from the initial and final analytic regions, which turns
out to be the most significant one. It may be made small by decreasing the parameters fs
and fe (defined in section 4.5), but the resulting parameterization of the problem using ϕ1

close to ϕ0 and ϕn close to ϕfv leads to slow convergence toward the solution. Nevertheless,
by comparing solutions with one choice of fs and fe to more accurate solutions with a smaller
choice, we can find out how good a result we can get. The default choice of 10−2 for these
parameters gives relative accuracy about 10−3 in the action, while reducing them to 10−3

gives relative accuracy about 10−5.
For comparison, Ref. [12, 38] claimed accuracies of order 10−2, and [33] claimed profiles

accurate to 10−3. Konstandin & Huber [35] report errors of 7× 10−6 using 1600 lattice sites.

6.5 Possible issues

Here we describe certain difficulties the user may encounter with the code. Some of these
may be resolved in future releases.

• Runaway potentials (i.e., those whose true vacua do not exist) are not currently sup-
ported. Note that it is always possible to modify such potentials, moving the true
vacuum in to finite field values, in a way which does not affect the bounce instanton.

• As discussed in subsection 4.2, near the beginning and end of the profile, we use analytic
solutions to the potential expanded to second-order in a Taylor series around ϕ1 and
ϕfv, respectively. For this to work, Mathematica has to be able to compute the second
derivative, which causes trouble with certain non-analytic functions such as Abs and
UnitStep. At the moment the best strategy is to smooth out such jumps by analytic
functions such as Tanh. The potential should not have jumps of this kind between ϕ0

and ϕ1 or between ϕn and ϕfv, or the result will be quite inaccurate.

• Potentials whose Hessian has a vanishing eigenvalue at the false vacuum are not sup-
ported. A vanishing eigenvalue at a point chosen as r1 would also be problematic,
but this is unlikely ever to occur unless the Hessian eigenvalue vanishes over a non-
infinitesimal region.

• As discussed above, while the accuracy of the solution can be improved by using small
values for fi and fs, the resulting parameterization leads to much slower convergence.
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7 Comparison with other methods

To our knowledge, all techniques for finding instanton solutions involve either shooting or the
division of the space of r to be considered into a lattice, i.e., a sequence of fixed r points.
Some methods use a hybrid of these two techniques.

In simple shooting, one just varies ϕ0 to look for a solution which stays near ϕfv for as
long as possible. As discussed above, this technique is unstable, but it works fine for thick-wall
solutions, where there is not much exponential growth. Even in thin-wall cases, it is possible
to beat the instability by the use of high precision arithmetic, but the needed precision can
be very high, so this is not an efficient technique. Avoiding such problems by using multiple
shooting regions gives the algorithm described in this paper.

Functional minimization problems can be solved by relaxation, in which one creates a
discrete approximation to the function and finds the minimum by varying the parameters of
this approximation. Unfortunately, the present problem is not minimization of the action,
because the action is a maximum with regard to dilation of the profile, and a minimum over
all other variations. However, the solution can be found minimizing an improved action [38]
or the integral of the square of the deviation from the equations of motion [39, 40].

Alternatively, Refs. [6, 12, 33] separated out the problem of finding the path taken by the
field in field space, which is strictly a minimization problem, and solved the one-dimensional
problem of finding the profile by shooting techniques. Refs. [12, 41] discuss a gradient de-
scent/ascent method for finding stationary points which are not minima, but according to
Ref. [12], splitting the path and profile problems is much more efficient. Konstandin & Huber
[35] used a lattice equation of motion, which they solved as a Newton’s method problem with
two equations (field and derivative) for each lattice site.

The difficulty of all such methods is that accurate results require using a large number
of points. Ref. [35] reported relative error of 7×10−6 in the action, but they used 1600 lattice
sites to do it. Such methods are especially problematic for a large number of fields N , because
the set of variables to be operated on is then multiplied by N . The multi-shooting method
described here is able to achieve good accuracy without a large number of variables.2

8 Conclusion

We have presented here a multi-shooting method for the calculation of instantons for the
nucleation of bubbles of true vacuum inside a false vacuum in a potential depending on
several fields. This method succeeds nearly all the time in the tests that we have done. For
one to three fields it runs quite quickly, and even for nine fields it succeeds, albeit slowly.

We have made our Mathematica implementation of this method freely available, as
described in appendix C below. We hope it will be useful, both for the calculation of tunneling
rates in specific models, and for statistical surveys of large numbers of random potentials.
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A Calculation of Jacobian

In order to implement Powell’s hybrid method we need to know how the equations change
when we change the parameters. One way to do so is by changing the parameters by small
amounts to see how the result changes. In fact, Powell [42] gives a procedure to do this,
primarily using the sequence of parameter choices. However, direct calculation of the Jacobian
is more reliable and less prone to numerical errors, and it is possible to do that here.

A.1 Solving for Jacobian along the path

To compute the Jacobian, we need to know, for each shooting step, the way in which the
solution to the differential equation, and thus the value of the field and its derivative at the
endpoint, depend on the initial conditions.

We start with a system of first order differential equations,

f ′(r) = F(r, f(r)) , (A.1)

with the initial conditions f(0) given. That is, f(r) is a vector function of r whose derivative
depends upon r and the value of f at r. We want to know how the solution of the differential
equation at some point r depends on changes to the initial conditions. So suppose that we
start with infinitesimally different initial conditions g(0). Assuming F is a smooth function,
these new conditions will give rise to an infinitesimally different solution g(r) and we can
define A(r) = g(r)− f(r). Then A satisfies a simple differential equation,

A′(r) = g′(r)− f ′(r) = F(r,g)− F(r, f) = F(r, f + A)− F(r, f) =
∂F

∂fj
Aj(r) . (A.2)

The first-order effect on fi(r) due to changes in fi(0) is given by the Jacobian matrix
with components

Jij =
∂fi(r)

∂fj(0)
. (A.3)

To find such a component, we choose Aj(0) = 1 for the j of interest and 0 for the others, and
then Jij(r) = Ai(r). Thus, for each j, the Jij(r) are the solution to the system of differential
equations

J ′ij(r) =
∂Fi
∂fk

Jkj(r) with initial conditions Jlj(0) = δlj . (A.4)

Since (A.4) holds for each j, we can consider it to be a matrix differential equation giving all
components of Jij(r).

Let us apply this technique to the Jacobian for the differential equations given in (2.5).
First we convert these equations into a set of first order equations by defining auxiliary fields
φ′i = φi+N and rewriting (2.5) as

φ′i+N = −D − 1

r
φi+N +

∂U

∂φj
,

φ′i = φi+N . (A.5)
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Now the problem is mapped into the form of (A.1) and we get a simple expression

∂FA
∂fB

=

(
0 I

∂2U/∂φi∂φj −D−1
r I

)
(A.6)

To calculate the Jacobian we first solve the differential equations (2.5) and then evaluate
(A.6) along the solutions φ to solve (A.4) and get JAB(r).

For the first and last interval we must also take account of the fact that we specify
only φ1 and φn, and φ′1 and φ′n are determined from these. Those derivatives then in turn
determine the initial conditions used in shooting. Thus the Jacobian for these cases must
include the effect of a change in the field value upon the derivative found by the procedures
of section 4.2.

When we consider variations of φ1, we should consider changes to the Hessian matrix
Bij of equation (4.2), because of being evaluated at a different φ. But these depend on the
third derivatives of the potential and are complicated to calculate. So we have ignored this
effect in computing the Jacobian. This should not creating any larger problem than ignoring
these same third derivatives in computing the analytic approximations.

A.2 Jacobian with respect to ∆

As described in subsection 4.3 we do not evaluate the fields at constant values of r. Instead we
have an extra variable ∆ which changes the value of the ri where we apply the parameters.
Fortunately, we do not need to solve extra differential equations to compute the effect of
changing ∆. The matching points are

Ri = {r1 + ∆, r2 + ∆, . . . rn + ∆} (A.7)

Here we show the procedure for case of n = 4 case, which is depicted in figure 4, with a single
field. Generalization to arbitrary n and N is straightforward. First we calculate the following
Jacobian using the technique described in section A.1:

J =


∂φL(r2)
∂φ(r1) 0 0 0
∂φ′L(r2)

∂φ(r1) 0 0 0

0 ∂φL(r3)
∂φ(r2)

∂φL(r3)
∂φ′(r2) −

∂φR(r3)
∂φ(r4)

0
∂φ′L(r3)

∂φ(r2)

∂φ′L(r3)

∂φ′(r2) −
∂φ′R(r3)

∂φ(r4)

 . (A.8)

When we add the new variable ∆, our Jacobian will the same number of rows, but one
more column, giving the dependence of the various parameters on ∆,

Jtotal =


∂φL(r2)
∂∆

J
∂φ′L(r2)
∂∆

∂φL(r3)
∂∆ − ∂φR(r3)

∂∆
∂φ′L(r3)
∂∆ − ∂φ′R(r3)

∂∆

 . (A.9)

There are two types of effects due to ∆. First, after we solve the differential equation, changing
ri changes the place at which the solution is evaluated. Second, changing ri changes which
solution of the differential equation we use when we start from the same initial data φ(ri)
and φ′(ri). We can propagate the new data back to the former location of ri, changing the φ
and φ′ values used as initial conditions appropriately.
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In all, we find six types of terms that we need to calculate:

∂φL(r3)

∂∆
= φ′L(r3)− φ′(r2)

∂φL(r3)

∂φ(r2)
− φ′′(r2)

∂φL(r3)

∂φ′(r2)
,

∂φ′L(r3)

∂∆
= φ′′L(r3)− φ′(r2)

∂φ′L(r3)

∂φ(r2)
− φ′′(r2)

∂φ′L(r3)

∂φ′(r2)
,

∂φL(r2)

∂∆
= φ′L(r2)− φ′(r1)

∂φL(r2)

∂φ(r1)
,

∂φ′L(r2)

∂∆
= φ′′L(r2)− φ′(r1)

∂φ′L(r2)

∂φ(r1)
,

∂φR(r3)

∂∆
= φ′R(r3)− φ′(r4)

∂φ′R(r3)

∂φ(r4)
,

∂φ′R(r3)

∂∆
= φ′′R(r3)− φ′(r4)

∂φ′R(r3)

∂φ(r4)
. (A.10)

The partial derivatives on the right in (A.10) are all elements of the original Jacobian J . The
first derivatives at r2 and r3 are variables, while those at r1 and r4 can be computed from
the analytic forms given in section 4.2. Finally, the second derivatives can be computed using
the equations of motion,

φ′′(ri) = U ′ (φ(ri))−
D − 1

ri
φ′(ri). (A.11)

B Powell’s method for solving equations

M. J. D. Powell [42] describes a method for solving multiple simultaneous equations that is a
hybrid of Newton’s method and gradient descent. We describe this method briefly here; for
more details, see Ref. [42].

Powell’s hybrid method attempts to iteratively find the simultaneous root of a set of
nonlinear functions fi(x1, . . .). Given some current guess x, the method finds some step δ
such that x + δ is a better approximation to the desired root. This is done by (potentially)
combining two possible steps.

We first linearize the equations around the point x. Newton’s method works by consid-
ering next the solution to these linearized equations. This method is quadratically convergent
if one is close enough to the actual solution. But if not, the next guess can be much further
from the actual solution than the previous one.

An alternative is to move in the direction which most rapidly decreases the squared error
F (x) =

∑
i x

2
i . This is a quadratic in the linearized fi(x), so it achieves a minimum at some

distance from x and we will call this direction and distance the gradient step.
Powell’s hybrid method combines these ideas as follows. It maintains at each time a

desired step size ∆ (in the Euclidean norm on the space of parameter values). If the step
recommended by Newton’s method is shorter than ∆, Powell’s method tries to take the
Newton step. If not, consider the gradient step. If it is longer than ∆, try going distance ∆
in the gradient direction. If it is shorter, try a linear combination of the gradient step and
the Newton step that has length ∆.

In all cases, if the trial step decreases F we take it, and adjust the step size based on
how much progress we are making. If the trial fails to decrease F , we try shorter and shorter
steps until we find one that does. If only an infinitesimal step decreases F , it appears that
we have found a local minimum and must give up.
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The method starts always with a gradient step. If the method appears to be working,
it moves more and more toward Newton’s method, and eventually converges rapidly on the
solution. If things are going poorly, it slowly descends the surface of F until it finds an area
where it can move rapidly towards the solution (or fails at a local minimum).

In order to apply this method, we need the Jacobian ∂fi/∂xj . Powell [42] describes
techniques for maintaining an approximate Jacobian by a series of function evaluations. But
here we are able to compute the Jacobian numerically, as described in appendix A, so we
do not need these techniques. As described in section 4.3, we extended the method to allow
more variables than functions. This has no effect at all on the gradient method: we move in
the direction that most rapidly decreases F , just as before. For Newton’s method, there are
now many possible steps that solve the linearized equations, and we choose the shortest of
these.

C Obtaining and running the code

We have implemented the above procedures in Mathematica. The code can be downloaded
from http://cosmos.phy.tufts.edu/AnyBubble/. There is a manual which explains how to
find instanton solutions and all the options available in the code.
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